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Abstract— In this work, we present an adaptive motion
planning approach for impedance-controlled robots to modify
their tasks based on human physical interactions. We use a
class of parameterized time-independent dynamical systems for
motion generation where the modulation of such parameters
allows for motion flexibility. To adapt to human interactions,
we update the parameters of our dynamical system in order to
reduce the tracking error (i.e., between the desired trajectory
generated by the dynamical system and the real trajectory
influenced by the human interaction). We provide analytical
analysis and several simulations of our method. Finally, we
investigate our approach through real world experiments with
a 7-DOF KUKA LWR 4+ robot performing tasks such as
polishing and pick-and-place.

I. INTRODUCTION

Robots are mainly here to assist us with tasks that are
repetitive and burdensome such as polishing surfaces and
pick-and-place. Over the past four decades, the problem
of control and motion planning for such tasks has been
studied rigorously for traditional industrial settings. However,
recent advances in robotics aim to utilize robots in everyday
settings, such as small factories and home applications.
Therefore, having a human in proximity of robots who
intends to modify the robotic behavior through physical
interactions introduces new challenges; not only from a
control perspective to ensure safety and passivity but also
regarding motion planning to recognize the underlying in-
tentions and react accordingly. Interacting with a human
who might have different intentions/goals can be done in
several fashions: using control panels, remote controllers or
other extra interfaces. However, a seamless behavior can
be achieved if the robot reacts in accordance with human
interactions. Therefore, it seems desirable to have robots that
are not only compliant in their interaction, but also adaptive
to the intention of their users.

A myriad of robotic implementations made it clear that
collaborative robots require a form of compliant control for
safe and passive interaction with human users; see [1] as
an example. An impedance controller ([2]), for instance,
can follow a desired trajectory while being compliant to
perturbations (made by the human user). The impedance
parameters (e.g., inertia, damping, and stiffness) allow for
adaptation methods to achieve various control objectives: to
adapt to human forces [3], human compliant behavior [4],
or human intended set-point [5]. While these approaches are
very effective to locally and temporally adapt the human
physical-interactions, they are limited in adaptation to human
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Fig. 1. Online motion adaptation in a polishing task where the human
demonstrates his/her intention through physical interaction and the robot
adapts the task accordingly.

intention with regard to the underlying task. In this work,
we address this issue by adapting the task itself (i.e., the
motion planner rather than the impedance controller) in order
to accommodate for demonstrated human-interactions; see
Fig.1 where the underlying behavior of the task (i.e., the
ellipsoid) is preserved and adapted accordingly.

Incremental learning approaches focus on the learning
of a task as a whole through several interactions with the
environment or the human user; see [6], [7], and [8]. Several
techniques can be envisioned to accommodate the new
experiences. For instance reinforcement learning can be used
to learn the dynamics of physical interaction with human
[9], or learn to stay in contact with a surface properly [10].
In [11] Optimal control is used to improve the trajectories
for heavy load-carrying with a human. These methods can
learn from small corrections made by the human during each
interaction in order to achieve their goal; see [12]. These
demonstration can take place through physical interaction
with the robot; see [13], [14], [15], [16] for kinesthetic
teaching. However, the fact that in most current approaches
the learning and execution phases are disjoint and defined by
the human supervisor limits reaching a seamless interaction.
The interaction can be more effective if the robot learns
proper motion regarding different human intentions and dur-
ing the execution phase, the robot only adapts to the proper
already-learned motion based on human interaction. [17]
addressed this issue by learning statistical models that not
only generates motions for a given task but also, inversely,
recognize a task from a given motion. Others propose to
recognize the intention of the human based on the interaction
forces [18]. Furthermore, online switching across tasks based
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Fig. 2. Control loop of an adaptable dynamical system

on the human interaction has been proposed in [19], [20]
which provides the robot with proactive behavior. In this
work, we take a similar approach but rather than switching
across different tasks, we adapt the current task based on the
human interaction.

Simple robotic tasks, such as polishing and pick-and-
place, can be improved by adapting to the intention of the
human user. For example, adapting to the human desired
forces can improve the quality of a polishing task [21],
[22], [23]. This task can be improved further by adapting
to the human desired patterns. In another example, adaptive
behavior was provided for pick-and-place task where the
target locations were determined using visual guidance
[24] or natural language [25]. In this work, we propose
adaptive motion planning for such tasks based on the
physical interactions. To do so, we employ parameterized
dynamical systems (DS) which show flexibility toward
numerous possible human-intentions. For instance, in
[26], [27] the parameters of a time-dependent DS are
adapted to achieve a desired force during human-robot
interaction. However, adaptive time-dependent DSs capture
only the temporal aspect of the input signal (e.g., phase
lags and offsets). In this work, to capture the spatial
aspect of the human intention (e.g., where to polish or
pick/place), we employ state-dependent dynamical systems
[28]. We treat the human as a state-dependent reference
model (with the intended parameters), we propose and
analyze our adaptive mechanism in Section II. We put our
method in practice and report on the results in Section
III. Finally, in Section IV we discuss and conclude our work.

II. METHOD

In this section, we present our adaptive architecture which
is illustrated in Fig. 2. In the following, we present the
mathematical formulation for the control of the robot, motion
generation, and motion adaptation.

A. Robot Control

Consider the rigid-body dynamics with n degrees of free-
dom described in the m-dimensional Cartesian space.

M(q)ẍr +C(q, q̇)ẋr +G(q) = Fc +Fext (1)

where q ∈ Rn denotes the joint configuration and xr ∈ Rm

the robot pose. Moreover, M ∈Rm×m is the mass matrix, C ∈
Rm×m represents the centrifugal forces, and G ∈Rm denotes
the gravitation forces. On the right-hand side, Fc and Fext ∈

Fig. 3. The effect of variation of the adaptive parameters on the DS and
the generated trajectories. (a) Normalized parameters. (b) Vector field
presentation of DS before and (c) after the transformation. The faded
parts of the trajectories indicate the transition. (d) generated trajectories
which are smooth.

Rm represent the control and external wrenches respectively.
We use the following impedance controller proposed by [29]
which provides stable and passive physical interaction.

Fc =−D(ẋr− ẋd)+G(q) (2)

where D ∈Rm×m is diagonal with positive entries. ẋd is the
desired velocity generated by dynamical systems.

B. Motion Generation

Consider a desired behavior encoded using state-
dependent DS as ẋd = f̂ (xr) where f̂ (xr) : Rm → Rm is a
globally stable DS at an attractor or a limit cycle under a con-
tinuously differentiable Lyapunov function. To reshape the
generated motion by the DS, we consider a diffeomorphism
T (Θ) :Rm→Rm with p free parameters (Θ= [θ1 · · ·θp] with
θi ∈R).The transformed DS can be formulated as

ẋd = f (xr;Θ) = T (Θ)−1 ∗ f̂ (T (Θ)∗ xr) (3)

Moreover, we assume that the DS stability is persevered
under the transformation for the region of interest in Θ.
In this work, we consider a simple transformation which is
a combination of translation, scaling, and rotation. In the
following, we provide more details on two types of DS that
we use for polishing and pick-and-place tasks.

1) Polishing task: To generate polishing patterns on a
surface (x = (x1,x2)

T ),we use a DS described in the polar
coordinates (r and θ ) as ṙ = −α(r− r0) and φ̇ = ω where
r2 = x2

1 + x2
2 and φ = atan2(x2,x1). ω ∈ R+ is the desired

angular velocity, α ∈ R+ is the desired radial velocity and
r0 ∈ R+ is the desired radius of rotation. Fig. 3 shows the
adaptation of such a dynamical system. We illustrate the
transformation of a simple circular motion to a complex



cyclic motion through smooth modification of the parameters
as described previously. We can observe that the generated
trajectories are smooth.

2) Pick-and-place: In order to generate pick-and-place
motion for the end-effector position, we use linear dynamics
described by ẋd = −Kp(xr− x̄) where Kp ∈ R3 is diagonal
with positive entries, and x̄ is the target location which is
an adaptive parameter. We use three instances of the same
dynamics to generate 1) approaching the picking location
2) going through a via-point 3) approaching the placing
location. We switch to the next dynamics when we are close
enough to the attractor (i.e., ||xr− x̄|| < δp). Moreover, we
go through the via point between each pick and place.

C. Adaptation Mechanism
We construct our adaptive law based on a minimization

of the tracking error described as J(Θ;K,∆ts) = 1
2 eT e where

where

e(t) =
1
K

K−1

∑
k=0

[ f (xr(t− k∆ts);Θ)− ẋr(t− k∆ts)] (4)

is the error between the desired velocity (generated by DS)
and the real velocity (influenced by human interaction) over
K points spaced with ∆ts in the past. For example, having
K = 1 brings us back to the instantaneous error. Intuitively,
by reducing this error, we adapt the DS to generate the same
movements as demonstrated by the human. We obtain this
by following the gradient of the cost-function as follows.

∂J
∂θi

=
1
K

eT
K−1

∑
k=0

∂ f (xr(t− k∆ts);Θ)

∂θi
(5)

To have the sensitivity of the DS to the parameters, we use
the following simple approximation.

∂ f (xr;Θ)

∂θi
=

f (xr;Θ6=i,θi +h)− f (xr;Θ6=i,θi−h)
2h

(6)

where h is the step size of the gradient, and Θ6=i denotes all
other parameters (except θi) that are kept fixed.
Having the gradient, we update the ith parameter as follows.

θi(t) = θi(t−∆t)− ε
∂J
∂θi

∆t (7)

where ε and ∆t ∈ R+ are the adaptation and update rate
respectively.

1) Convergence behavior: The convergence behavior of
our method can be investigated by assuming the following
form for the real velocity.

ẋr = (1−α)ẋd +α f (xr;Θ
?)+η(t) (8)

where α ∈ [0,1] is a rate at which the human takes the
robot away from its desired behavior (ẋd = f (xr;Θ)) and
demonstrate his/her intention which we assume follows the
same dynamical system but with a different set of parameters
(Θ?). η(t) accounts for un-modeled behaviors (caused by
the controller and the human). If we linearize w.r.t. Θ?, we
obtain:

f (x;Θ) = f (x;Θ
?)+

∂ f (x;Θ)

∂Θ
(Θ−Θ

?)+H(x;Θ) (9)

where H(.) denotes the higher-order terms. Plugging Eq. 8
and 9 into Eq. 4, simplifies the error function to:

e(t) = S(Θ−Θ
?)+d(t) (10)

where
S = α

K

K−1
∑

k=0
∂ f (xr(t− k∆ts);Θ)/∂Θ

d(t) = 1
K

K−1
∑

k=0
αH(xr(t− k∆ts);Θ)−η(t− k∆ts)

(11)

Given the assumption that the disturbance term d(t) is
negligible (more precisely, ∂d/∂Θ ' 0 and ST d ' 0) the
dynamics of the adaptation (Eq. 7) can be approximated by

Θ̇ =−εST S(Θ−Θ
?) (12)

where ST S ∈ Rp×p is a positive semidefinite matrix. Given
the fact that the number of parameters is higher than the
dimension of the error signal (p > m), the rank of ST S is
limited to m. However, the convergence to Θ? can take place
if the condition for Persistence Excitation (PE) ([30]) holds
as follows.

∃δ ∀t∃T > 0 s.t.
∫ t+T

t
S(τ)T S(τ)dτ > δ Im (13)

This guarantees the convergence of the parameters in average
over time. This means that the average of ST S over time is
strictly positive definite providing a sufficient condition for
stability in Eq.12. To provide better conditions for PE we aim
to use a higher number of data-point (i.e., K and ∆ts) over
a period of time that captures the behavior of both DS and
human demonstration. Moreover, the human can improve the
convergence by providing demonstration that results in lower
||d(t)||; i.e., demonstrations that can be expressed by the DS
(with lower ||η(t)|| in Eq.8) and desirable parameters (Θ?)
that are close to the current ones (which results in smaller
||H(x;Θ)|| in Eq.9).

III. RESULTS

The adaptation mechanism is implemented and tested on
the Kuka LWR 4+, 7-DOF robotic arm, for two previously
described tasks: polishing a surface and pick-and-place.
References to the demonstrations of the two tasks can be
found in Section V. To activate the adaptation upon human
interactions, we used a simple threshold on external force
(i.e., ||Fext || > 10N). Therefore, we avoid to adapt to small
tracking errors caused by other uncertainties and mismatched
dynamics. In both experiments, the velocities are limited to
0.2m/s.

A. Polishing task

Fig. 4 shows the results for the polishing experiment where
the human interacts with robot in three separate intervals (i.e.,
shaded ares). It can be seen by an increase in the external
forces and consequently the tracking error in Fig. 4.a. The
tracking error can be investigated further by inspecting the
desired and real velocities depicted in Fig. 4.b. Due to the
robot compliance, the human is able to demonstrate his/her
intention by influencing the real velocity. Fig. 4.c shows the



Fig. 4. Result of the polishing experiment. (a) The external forces and the tracking error. (b) The desired and real trajectory. Due to the impedance
control, the tracking performance is always influenced by the external forces. (c) The adaptation of the DS parameters. Bottom row (d, e, and f) shows the
adapted DS (i.e., the vector field), the adapted limit cycle, and real trajectory at different time periods. The robot perform the task autonomously (based
on the adapted DS) after the human disengages from the interaction.

adaptation of the parameters which consist of the translation
and scaling along both axes and the rotation. It can be
seen that upon interacting with the robot, the parameters are
adapting in order to reduce the error. The bottom row of
Fig. 4 shows the state of the DS in the three corresponding
intervals where the human interacts with the robot. These
plots demonstrate the ability of our method to fit the DS (i.e.,
the vector field) to the demonstrated motions; i.e., to capture
the intention of the human use. Moreover, these plots show
that the parameterized DS is capable of generating different
polishing patterns (i.e., limit cycles). In this experiment,
the following hyper-parameters are used: ε = 0.1, h = 0.01,
∆ts = 5s, K = 10, and ∆t = 0.05s.

B. Pick-and-place
Fig. 5 shows the results of our implementation for repeti-

tive pick-and-place where the robot alternates between pick
and place motion while going through a via-point. We use

our algorithm to adapt the target locations of pick and place.
Fig. 5.a. show the external forces and resulting tracking
errors induced by the human user. The desired velocity
generated by DS and the real velocity influenced partially
by the user are illustrated in Fig. 5.b. Fig. 5.c shows the
adaptation of the normalized parameters: the pick and place
target locations. It can be seen that only the parameters of the
active DS (either pick or place) are being adapted. Fig. 5.d
illustrate the human-robot interaction between 2s and 12s.
After performing pick, via-point, place, via-point, the robot
reaches for the last picking target. However, upon human
interaction (the human pulls the robot to a new intended
location), the target location for picking adapts accordingly.
Fig. 5.e-f show similar instances of such interactions where
the target locations are adapted. In this experiment, we use
the following hyper-parameters: ε = 0.001, h = 0.01, K = 1
(∆ts not applicable), ∆t = 0.05s, and Kp = 2. Moreover,



Fig. 5. Result of the pick-and-place experiment. (a) The external forces and the tracking error. (b) The desired and real trajectory. (c) The adaptation of
the DS parameters. Bottom row (d, e, and f) shows the adapted target locations, and real trajectory at different time periods.

in this implementation, the post-condition for switching
between DSs (e.g., from pick to via-point) is (1) to reach
the target (||xr− x|̄|< 0.05m) and (2) the absence of human
interaction (||Fh|| < 10N). This post-condition allows the
human user to adapt the current DS and not switch to the
next DS even if it reaches its target.

IV. DISCUSSION AND CONCLUSION
In this work, we derived our adaptive mechanism based

on tracking error where the performance of the adaptation
can be tuned using its set of hyper-parameters. Here, we
provide a short discussion on the effect of these hyper-
parameters. The speed of convergence is primarily controlled
by the adaptation rate (ε) which represents a trade-off
between slow convergence and fluctuations in the estimated
parameters. The approximation of the gradient is tuned by
h. This parameter needs to be small enough to have a
precise estimation of the gradient. However, dealing with
a noisy cost-function (due to noisy ẋr), it needs to be big
enough to avoid over-fitting (i.e., to the noise). Finally ∆ts
and K can be tuned properly to provide a rich signal for

adaptation (Eq. 13). ∆ts needs to be large enough to capture
the characteristics of both DS and human intention. For
example, in the polishing task, we use a ∆ts that includes
enough samples from a complete cycle of the motion. Further
increment of ∆ts includes information from the past that
are no longer relevant. K controls the number of samples
from the time-window created by ∆ts. K needs to be tuned
properly to have a robust down-sampling while reducing the
computational cost. For example, we found K = 1 to be
sufficient in the pick-and-place experiment. Intuitively, the
condition for persistent excitation is easier to achieve: input
dimension being 2 (i.e., error along x1 and x2) and parameter
dimension being 2 (i.e., x̄1 and x̄2 since the adaptations
of pick and place are mutually exclusive) compared to
polishing task where the input dimension is 2, however,
there are 5 parameters to adapt. This fact is reflected in
the convergence speed of the parameters; compare Fig. 4.c
with Fig. 5 where the latter has faster convergence. Finally,
in order to distinguish the human interaction from other
undesirable forces (disturbances, frictional forces, etc.), the



force-threshold needs to be chosen carefully. A low value
results in undesirable adaptation to disturbances, while a high
value requires higher human effort to trigger the adaptation.
A more sophisticated and robust method for the detection of
human interaction is on our list for future work.

Overall, the proposed adaptive mechanism enables the
robot to adapt its motion according to the human interactions.
DS-based Impedance controller, along with a transformation
that preserves the stability of the DS, guarantees the overall
stability of the control loop. Moreover, the convergence of
the parameters (to the intended ones) is guaranteed if the
human demonstration satisfies the persistent excitation con-
dition. Our implementation on the robotic arm for different
tasks (i.e., polishing a surface and pick-and-place) proves the
efficacy of our method in capturing the human intention. Our
experimental results are in line with our analytical analysis in
terms of convergence behavior. In conclusion, parameterized
dynamical systems (as adaptive motion generators) along
with impedance control (providing compliant interaction)
proves to be effective to provide seamless and intuitive
physical human-robot interaction. In future, we focus on
reducing human effort and improving tracking performance
since in the current state, the impedance gain presents a
trade-off between compliance and tracking precision.

V. SUPPLEMENTARY MATERIAL

Demonstrations of our method can be viewed in the video
attachments or at https://youtu.be/qIcOAtVMNgE
and https://youtu.be/TGwNkSEMm0M
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