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Abstract
A seamless interaction requires two robotic behaviors: the leader role where the robot rejects the external perturbations
and focuses on the autonomous execution of the task, and the follower role where the robot ignores the task and complies
with human intentional forces. The goal of this work is to provide (1) a unified robotic architecture to produce these two
roles, and (2) a human-guidance detection algorithm to switch across the two roles. In the absence of human-guidance,
the robot performs its task autonomously and upon detection of such guidances the robot passively follows the human
motions. We employ dynamical systems to generate task-specific motion and admittance control to generate reactive motions
toward the human-guidance. This structure enables the robot to reject undesirable perturbations, track the motions precisely,
react to human-guidance by providing proper compliant behavior, and re-plan the motion reactively. We provide analytical
investigation of our method in terms of tracking and compliant behavior. Finally, we evaluate our method experimentally
using a 6-DoF manipulator.

1 Introduction

Robots are leaving their traditional and industrial setting to
join and help us with our everyday life. They are expected
to perform a variety of tasks in environments with consid-
erable amount of uncertainty. In an interaction with such
environment, many sources of perturbation to the task-at-
hand can be imagined. Some of those are accidental that
need to be rejected (in order to fulfill the task autonomously)
while some are intentional and must be incorporated into
the robotic behavior; e.g., complying with the human inten-
tion to switch from one task to another. For example, when
carrying heavy-load, the robot should reject the disturbance
forces that undermine the stability of the task while provid-
ing reactive behavior toward intentional forces of the human
to determine his/her intention for path planning. Therefore,
it is crucial to provide robots with algorithms that can detect
such human guidances, reactive yet stable motion planners,
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and compliant controllers. To this end, we use dynamical sys-
tems (DS) for motion planning where a specific robotic task
can be encoded as mapping from robot’s states to robot’s
desired velocities (Khansari-Zadeh and Billard 2011). Sta-
bility and generalization of such models allow the robot to
tolerate perturbations in its states and to generate a reactive
motion for successful execution of the task (Kronander and
Billard 2016).

Compliant control (in the form of impedance or admit-
tance) was initially proposed to provide safe and passive
interactions with the environment (Hogan 1988). The robot
can track a certain trajectory (e.g. those generated by the DS
to fulfill a task) while exhibiting compliant behavior toward
external perturbation. In the absence of human-interaction,
the robot executes the task autonomously. However, having
the human in the interaction, the robot acts as a compli-
ant leader; i.e., damping human-inputs in order to execute
the task. Moreover, having no reference trajectory, the robot
can only react to human forces and appears as a passive-
follower. This is useful when the robot supports a heavy load
and renders a lower inertia for the user (Kang et al. 2010).
Furthermore, adding prediction capabilities, the robot (while
following the human) can estimate the human-desired tra-
jectory, and act upon it (Calinon et al. 2014). This leads
to a proactive-follower behavior. In the follower form, the
compliance of the robot can be tuned (or varied, using
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Fig. 1 An illustration of human robot collaboration where the robot
reacts intelligently to external perturbation. In the first scenario, the
robot rejects the undesirable disturbances for a better tracking per-
formance; i.e., to maintain the drilling point and to avoid damaging
the object and the tool. In the second scenario, the robot detects and
complies with the human guidance; i.e., the robot becomes compliant
and passive where the human can easily move the tool and demon-
strate his/her intention. Moreover, the robot recognizes the intention
and moves to the next drilling point to perform the task autonomously
(color figure online)

variable-compliance controllers) to provide intuitive and
effortless interaction for the human (Duchaine and Gosselin
2007). However, in the compliant-leader form, the com-
pliance parameters (e.g., the impedance gain) are facing a
trade-off; i.e., high gains lead to higher precision in execu-
tion of the task, while low gains lead to higher compliant
behavior toward the human user. To have versatile interac-
tion, robots ought to not only play all these roles, but also
knowwhen andhow to switch across themwith a proper com-
pliance profile; see Evrard and Kheddar (2009) as pioneer of
this idea. Consider the example illustrated in Fig. 1 where
the robot is initially executing a reaching task autonomously
and maintaining the target position. In doing so, the robot is
a non-compliant/stiff-leader so as to reach a desirable track-
ing performance and rejecting the undesirable disturbances.
Detecting human guidance, the robot becomes compliant
in selective directions, allowing the human to modify only
locally its motion. As such, the robot appears as a compliant
leader, as it still carries on with the initial task. If the human
guidance persists, the robot increases its compliance until it
becomes a passive-follower. This allows the human to take
over the leadership of the task, which subsequently allows
the human to demonstrate a desired behavior to the robot.
Next, the robot starts to follow a prediction of the human
intention, which renders the robot as a proactive-follower.
The human, accepting the robot’s prediction and proactivity,
retreats from the interaction allowing the robot to become
autonomous (stiff-leader) and to focus on tracking behavior.

Human-guidance canbe recognized through severalmodal-
ities and contextual information such as vision, natural-
language processing, etc. However, in this work, we focus
on the haptic channel, namely relying on the external forces
sensed by the robot. The literature of dyadic task proves that
haptic communication plays a crucial role. van der Wel et al.
(2011) indicate that the haptic channel is rich enough to rec-
ognize the intentions and predict partner actions. Reed et al.
(2006), Groten et al (2010) and Oguz et al. (2010) show
that dyads can quickly negotiate a more efficient motion
strategy using haptic communication and improve their per-
formances. For example, Madan et al. (2015) reports on
“persistent conflicts” where one partner insists on applying
force in opposite directionof themotion.They argue that such
conflicts are recognized and resolved easily. Moreover, hap-
tic information contributes to role distribution (Pham et al.
2010). For instance, Stefanov et al. (2009) infer the dyadic
roles based on the sign of interaction forces, velocities, and
accelerations. They categorize the roles into “executor” (who
performs the task) and “conductor” (whodecides on the task).
They also report on a persistent phase where the same part-
ner is both executor and conductor (and the other partner
is potentially a passive follower). Following the same line,
we rely on such persistency of interaction forces to detect
human-guidance. This brings us to an analogy to the liter-
ature of collision avoidance where a sudden change in the
force (or momentum) perceived by the robot are indicative
of a collision (Haddadin et al. 2017). The benefits of haptic
information in robotic applications are twofold: (1) high-
frequency components in the haptic channel (e.g., sudden
changes in forces) can contribute to a safe interaction with
the environment, and (2) low-frequency components (e.g.,
persistent forces) can be utilized for human-guidance detec-
tion, role distribution, and human-intention detection. In this
work, we detect human-guidance based on the persistency
of the haptic information and we adapt the robotic behavior
accordingly.

In this work, we propose a novel control architecture
to provide proper compliance and motion-control based on
human-guidance. This architecture is depicted in Fig. 2.
We assume that the robot is controlled in velocity (either
using pure high-gain velocity controller or via velocity-based
impedance controller), and position and force feedback are
available. In order to obtain reactive motion planning, we
employ state-dependent dynamical systems to encode our
desired robotic tasks. Furthermore, in order to achieve intel-
ligent compliant behavior, we propose a human-guidance
detection algorithm that only passes intentional forces to
an admittance controller. This controller structure can be
seen as an interplay of two separated control loops: the
inner loop which aims to provide precise tracking behavior,
and the outer loop which aims to provide proper compli-
ance behavior (i.e., to reject the disturbances or to allow
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Fig. 2 The unified control structure to provide motion-tracking and
compliant behavior based on human intention. In this diagram, Fe
and F̃h represent the external and the estimated human-intended forces
respectively. h, the human-interaction ratio, is computed based on the
external force. ẋa is the admittance-generated velocity based on the
estimated human forces (F̃h). ẋt represents the task-specific velocity
generated by the dynamical system based on the robot’s position (xr ).
The final desired velocity sent to the robot is represented by ẋd . In this
architecture, the inner loop provides the tracking behavior and the outer
loop provides following behavior toward the human input. Based on the
external forces, we detect if the human demands following behavior.
Detected human-guidance (h) attenuates the effect of motion planner
(color figure online)

Fig. 3 A conceptual illustration of our method. (Sti f f leader ) The
robots starts by performing a task encoded by a dynamical system
( f1). During this period, the robot rejects the external disturbances
and focuses on the tracking behavior. (Compliant leader ) The robot
detects intentional interaction with human and as a result provides com-
plaint behavior while performing the task. (Passive f ollower ) The
robots neglects the task and stays compliant using the admittance loop.
In this phase, the robot observes the motions that human demonstrates
which is detected as another task ( f2). (Proactive f ollower ) Know-
ing the intended task, the robot starts to actively follow the human
guidance, which results in human retrieval. (Proactive f ollower ) The
robot starts to autonomously perform the intended task (color figure
online)

for human-interaction). Figure 3 shows how this structure
enables the robot to take different roles in the interaction.
In the following, we review the related works. Later, we put
our approach under rigorous mathematical analysis in terms
of stability, passivity, and tracking performance. Finally, we
conduct several robotic experiments in order to show the effi-
cacy of our method in real-world interaction with human.

2 Related works

Safety is the first concern for robotic interactions with the
environment. A conservative approach is to ensure a passive

interaction; e.g., the kinetic energy of the robot dissipates
over time. The control strategies proposed by Hogan (1988)
provide straightforward formulations (impedance and admit-
tance) for such passive and compliant interactions. In its
simple form, the robot renders a mass-spring-damper behav-
ior around a fixed-point. Having proper parameters (i.e.,
inertia, damping and stiffness matrix), one can achieve pas-
sive interaction. Considering only the damping part allows
the robot to passively follow the external forces; i.e., passive-
follower. This is useful for transportation tasks (especially
for mobile platforms as in Kang et al. 2010) or manipulation
taskswhere a different andmore suitable inertia and damping
is rendered for the human user as in Duchaine and Gosselin
(2007). In the same line, varying the compliant behavior
can improve the interaction from the user point-of view
(Duchaine and Gosselin 2007). Moreover, instead of a set-
point, the robot can exhibit the compliance behavior around
a reference trajectory; i.e., a compliant-leader in the inter-
action. This trajectory can be pre-computed (Ferraguti et al.
2013), or can be generated reactive the state of the robot (Kro-
nander and Billard 2016). The reference trajectory can also
be predicted from the humanguidance (Medina et al. 2012; Li
et al. 2016; Calinon et al. 2014; Modares et al. 2016), which
leads to a proactive following behavior. However, tracking
a trajectory potentially undermines the passivity of the sys-
tem. Energy tank-based controllers were employed to relax
the conservative condition on the passivity (Ferraguti et al.
2015; Schindlbeck and Haddadin 2015; Kronander and Bil-
lard 2016); i.e., the robot can be temporally active and injects
energy into the environment while, on average-over-time,
stays passive. Generating motion using dynamical systems
with their corresponding storage functions (as proposed in
Kronander andBillard 2016) allows us to investigate and con-
trol the passivity of the whole system easier. Same approach
is used by Shahriari et al. (2017) to include the energy due to
the motion planning using Dynamic Movement primitives.
The literature of robotic compliant control clearly shows
the efficacy of the proposed methods to generate a “single”
desired behavior (e.g., compliant leader, passive or proactive
follower). However, it falls short from providing robots with
intelligencemechanism for detecting the proper behavior and
switching mechanisms that are proved to be safe and stable.
An initial and interesting approach to switch between leader
and follower behaviors was offered in Evrard and Kheddar
(2009). In that work, a homotopy variable is used to linearly
combine the two behaviors. However, they pose it as a future
work to adjust this variable based on the contextual informa-
tion and guarantee the stability. In a follow-up work, Bussy
et al. (2012) utilizes amanual switch frompro-active follower
to leadership. We take a similar approach in combining the
leader and follower behavior; i.e., generated velocities by
dynamical systems and admittance loop respectively. How-
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ever, we provide an adaptation/estimation for such homotopy
variable while guaranteeing the stability of the system.

To endow robots with leader behavior, we employ state-
dependent dynamical systems (DS) as motion generators.
Such DS can be learned through human demonstrations and
provide stable and convergent trajectories (Khansari-Zadeh
and Billard 2011). The state-dependency of DS provides a
reactive behavior; i.e., the external perturbation to the state
results in a different desired velocity. Moreover, consider-
ing the storage-function related to the DS leads to simpler
design of passive interaction with the environment while per-
forming a task (Kronander and Billard 2016). Furthermore,
DS provides a strong framework for adaptive motion gen-
eration. To do so, the dynamics can be modulated based on
external signals; e.g., Gribovskaya et al. (2011) use exter-
nal forces to perform a collaborative task, Sommer et al.
(2017) use contact information to avoid obstacle, Medina
et al. (2016) use the load-share to obtain a fluid hand-over,
and Khoramshahi et al. (2018) use tracking error to refine a
DS based on human guidance. DS provide a computation-
ally light motion planning which allows for smooth transient
behaviors. In our previous works, we proposed adaptive
mechanisms to switch smoothly from one task to another
(Khoramshahi and Billard 2018). The robot was then acting
as an adaptive compliant-leaderwhere the lower/higher com-
pliance favors the tracking-error/human-effort. However, it
seemsmore natural if the robot changes its role andbecomes a
passive-follower so the human can demonstrate his/her inten-
tionwith a lower effort. Li et al. (2015) offer amethod to vary
the robot’s impedance based on the interaction forces as to
continuously switch the role between leader and follower.
However, such methods are prone to undesirable distur-
bances, as they do not distinguish between intentional and
accidental forces. In this work, we provide a framework
where the robot detects the human-guidance and reacts by
providing a proper compliant behavior.

To endow robots with compliant behavior, we use an
admittance controller; i.e., the robot senses the interaction
forces and responds with proper velocities. This controller is
widely used in the literature of pHRI: collaborative assembly
(Cherubini et al. 2016), insertion tasks (Mol et al. 2016). By
responding to human forces, the robot can provide a sim-
ple following behavior as in Duchaine and Gosselin (2007).
Moreover, human trajectory estimation can provide pro-
active following behavior (Jlassi et al. 2014). Duchaine and
Gosselin (2009); Ranatunga et al. (2017) proposed a method
to adapt to human stiffness as to generate cooperative move-
ments. Admittance control is also suitable for whole body
control of robot such as arm-based platform (Dietrich et al.
2012). Hashtrudi-Zaad and Salcudean (2001) argues that per-
formances of this controller depend on the stiffness of the
environment and propose a method to switch an impedance
controller to have the accuracy of admittance control in

free motion with the robustness of the impedance controller.
Campeau-Lecours et al. (2016) also argues that admittance
control is suitable to perceive the environment and human
intentions and to respond accordingly. They mention that
the behavior is acceptable if the reference trajectories are
highly dynamic. Admittance control provides a simple solu-
tion toward active leader behavior: the resulted velocities
from the external force can be simply added to task-specific
velocities. This idea is used in Corteville et al. (2007) and
Shahriari et al. (2017). In thiswork,weuse the same approach
to combine task-specific motion planning with proper com-
pliant behavior.

Admittance control is suitable to detect human interac-
tion while performing a task. This controller can provide the
proper behavior byfiltering/modifyingmeasured forces. This
is not the case in impedance control where the input is a dis-
placement. The literature of collision detection exploits this
fact. The robot rejects small external forces and delivers a sat-
isfactory tracking behavior. It only reacts to forces detected
as collision. Detection algorithms rely on the assumption that
collisions result in a fast rate of change in different quanti-
ties such as input power (De Luca et al. 2006), generalized
momentum (He et al. 2015), external forces (Haddadin et al.
2008; Cho et al. 2012). The collision is detected if the magni-
tudeof such signals surpasses a certain threshold.This thresh-
old can be adapted over time based on the evolution of the
force signal as proposed inMakarov et al. (2014).More elab-
orated method uses the difference between real and nominal
dynamics (Landi et al. 2017; Kouris et al. 2018) suggest to
use frequency domain approaches to distinguish unexpected
collisions from voluntary contact during human–robot col-
laborations. Interestingly, they conclude that admittance con-
trol provide the fastest reaction behavior. Reaction strategies
are also of interest to our work where the robot switches from
active to passive mode; as in Li et al. (2018) where the robot
switches from position control to a passive torque-control
upon collision with a human user. In contrast, we use a uni-
fied control architecture (i.e.,DS-based admittance controller
with human-guidance detection)which allows us to smoothly
switch back and forth between active and passive modes.

Even though, detection of human-leadership is struc-
turally similar to collision detection, there are a few important
differences. First, a human joining the interaction does not
necessarily results in high rate of changes in force or energy.
Second, it is required to detect not only the human join-
ing the interaction, but also leaving it. Interactions with
the environment are usually considered passive while the
human is an active agent who intends to inject energy into
the system. The literature on variable compliance control
offers different approaches where the controller adapts to
detected human intentions (Lecours et al. 2012; Kim et al.
2017; Ranatunga et al. 2015; Corteville et al. 2007). How-
ever, such works are limited to a single role for the robot,
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and human-interaction detection is not used to switch from
leader to follower. We assume human-guidance forces are
consistent (as opposed to noises, oscillations and short-lived
disturbances like shocks). In this work, we rely on such prop-
erties to detect human-guidance forces (instead of fast rate of
changes in the lit. of collision detection). To measure consis-
tency, we compute autocorrelation on the force pattern as a
metric to distinguish between intentional (human) guidance
and disturbances. Moreover, for reaction/adaptation strategy,
we propose a smooth transition between motion tracking
and compliant behavior (instead of just varying/adapting the
compliance). Our human-guidance detection method is inde-
pendent from the control structure and our reaction strategy
is proved to be stable.

3 Motion-compliance control

We model the robot’s end-effector as a rigid-body described
in the task space with the state variable x ∈ Rn where
the measurement of external forces (Fe ∈ R6) is avail-
able. As illustrated in Fig. 2, we assume that the robot is
velocity-controlled. We combine the task-specific velocity
(ẋt ) generated by the robot’s nominal DS with the velocity
generated by the admittance controller (ẋa), this yields

ẋd = (1 − h)ẋt + ẋa (1)

where h ∈ [0, 1] is a modulation factor that is generated by
the human-detection algorithm. Moreover, ẋt and ẋa are the
velocity generated by the DS and admittance respectively.
The desired velocity (ẋd ) is sent to the velocity controller to
be tracked by the robot. We use a nominal dynamical system
for motion planning, given by:

ẋt = f (x) (2)

where f : Rn �→ Rn generates task-specific velocities (ẋt )
for given robot’s positions (x).

Finally, the compliance behavior is delivered through
admittance control with the following formulation:

Maẍa = −Daẋa + F̃h (3)

whereMa and Da ∈ R
n×n are admittancemass and damping

matrices. The human-guidance forces (F̃h) is estimated using
our algorithm based on the external forces (Fe).

4 Human-interaction detection

Our human detection algorithm can be seen as a soft switch
as follows.

F̃h = hFe where 0 ≤ h ≤ 1 ∀t (4)

where F̃h is the estimated human-force, and h is the human-
interaction ratio: h = 0 results in stiff behavior whereas
h = 1 brings out the compliant behavior given by the admit-
tance dynamics. In the following, we show how we compute
this ratio. First, in order to understand whether there is a
consistent intention behind external forces, we simulate the
following virtual admittance.

Ma ¨̃x = −Da ˙̃x + Fe (5)

˙̃x ∈ R
d is the virtual state. Using this virtual admittance,

we estimate the motion resulting from reacting to Fe. Given˙̃x , we can estimate the persistency of the input using the
following powers:

P̃i = ˙̃xT Fe P̃o = ˙̃xT F̃h (6)

where P̃i and P̃o are the input and output power respectively.
Now, we consider an energy tank (with the state E and size
Em) with the following dynamics.

Ė = P̃i − P̃o − (1 − h)P̃d (7)

where P̃d > 0 is a dissipation rate that is modulated by
human-interaction ratio h. This energy is limited between 0
and Em . Human-guidance ratio h is decided based on stored
energy in the tank as follows.

h =
{
0 E ≤ Et

(E − Et )/(Em − Et ) E > Et
(8)

where Et is threshold that triggers the detection of the human-
guidance. This linear mapping allows for a straightforward
analysis of our method. Nevertheless, other monotonically
increasing functions can be considered; e.g., to have smooth-
ness at h = 0 and 1.

The block diagram of our method is illustrated in Fig. 4. It
can be seen that the velocity of the virtual admittance block
(i.e., a mass-damper system) is used to detect a continuous
power coming from the external force. More specifically,
positive values of P̃i increase the stored energy and conse-
quently increases h. This means the human must contribute
to a positive value of the power over a certain period to gen-
erate a response from the robot. Positive power is relevant to
the consistency in motion and the indication whether there
is an intention behind external forces. P̃d acts as a forget-
ting factor and suppresses the small forces that need to be
rejected.

The dynamics of h are investigated further in
“Appendix A.1”. It can be seen that in the virtual admit-
tance ˙̃x is the filtered and scaled version of Fe. Therefore,
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Fig. 4 The block diagram representation of the human-guidance detec-
tion method. Fe and F̃h represent the external and the estimated
human-intended forces respectively. ˙̃xa is generated velocities using
the virtual admittance (Eq. 5). P̃i and P̃o denote the input and output
power respectively, and P̃d the dissipation rate. E is the accumulated
energy in the tank, and h is the human-interaction ratio. Δ represents a
unit delay in computation of F̃h due to integration operator

P̃i measure the correlation between Fe and its history; i.e.,
autocorrelation. This fact is shownwith furthermathematical
details in “Appendix A.2”.

Figure 5 shows the result of our detection algorithm for
three different types of external forces: Gaussian noise, a
persistent force, and a series of impulses. The resulting F̃h
shows that only the persistent human-input will pass the fil-

ter and the other undesirable disturbances are rejected. Our
method exhibits a delay at t = 3s for the detection of the step
function. This delay is necessary to ensure that the signal is
persistent. Furthermore, we compare our method to low-pass
filters with different bandwidths. Even though, low-pass fil-
ters can show faster response to the step function, they still
suffer in passing the undesirable disturbances. It is also inter-
esting to note that h is smooth over time, except at h = 0
(with ḣ > 0) and h = 1 (with ḣ < 0). These exceptions
are mainly due to (1) the delay introduced by the forward
integration (i.e., Δ as illustrated in Fig. 4), and (2) the abrupt
and persistent changes in Fe at t = 3 and t = 6. However,
this is not an issue as our method does not introduce fre-
quencies (in F̃h) higher than those that are already present in
Fe.

Finally, considering the actual admittance block (Eq. 3),
the variation of h renders a variable-admittance control
equivalent to the following.

M̄a ẍa = −D̄a ẋa + Fe (9)

where M̄a = h−1Ma and D̄a = h−1Da . Here, we have vari-
able admittance control without any loss of stability, which is
usually the case in impedance controller. This is an advantage
of admittance over impedance sincewe can arbitrarily change

Fig. 5 Comparison between our algorithm for human-guidance detec-
tion and low-pass filters. The responses are evaluated for Gaussian
noise, step function, and a train of impulses. In simulation, we use
Em = 2, Et = 1, P̃d = 2, Ma = 1, Da = 8, dt = 1ms. The Gaus-
sian noise is generated by N (0, 36), and impulses last for 10ms every
50ms. The lower graph shows the changes of the accumulated energy

(E plotted in black with respect to the left-hand side y-axis) and the
human-interaction ratio (h plotted in blue with respect to the right-hand
side y-axis). The green shade corresponds to the intentional forces; i.e.,
the step function. The dashed line represents the size of the energy tank
(i.e., Em = 2) which is mapped to h = 1 (color figure online)
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Fig. 6 A simulated interaction in a one-dimensional case. The robot
rejects the external disturbances such as noises and shocks to deliver a
satisfactory tracking behavior. Moreover, the robot detects the human
guidance and complies with human intention as to reduce the required

effort. Green and red shades indicate the human guidance and distur-
bances respectively. The parameters are specified in “Appendix A.5”
(color figure online)

the admittance ratio. Finally, the passivity of the close-loop
system is investigated in “Appendix A.3”.

5 Illustrative example

For our first example, we consider a one-dimensional prob-
lem using the following nominal dynamical system for
motion generation:

ẋt = −kx (10)

The results are shown in Fig. 6. In this simulation, the
DS-impedance loop tries to bring x to zero from any arbi-

trary initial condition. We tested our algorithm against three
types of external forces. In t ∈ [0, 2], we apply zero-mean
Gaussian noise (N (0, 1)). As it can be seen, no energy is
accumulated in the tank and h remains at 0. This disturbance
is hence rejected and the system performs a perfect track-
ing of the dynamics generated by Eq. 10. In t ∈ [3, 6], a
simulated human applies a state-dependent force for 3 s with
the intent to bring the system to position x = 1, using the
following applied force:

Fe(x, ẋ) = −20(x − 1) − 10ẋ 3 < t < 6 (11)

The generated forces are saturated to [−10, 10]N . Due to the
consistency of this external force, the energy increases and
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Fig. 7 A simulated interaction in a 2-dimensional case. The robot ini-
tially tracks the desired velocity generated by the DS. Upon detecting
human-interaction, the robot becomes compliant and passively follows

the human motion. After human-interaction, the robot returns to track-
ingmode using the DS. The parameters are specified in “Appendix A.5”
(color figure online)

(a) (b)

Fig. 8 The results for adaptive DS in simulation where the proposed
algorithm is used to adapt the motion only to the detected human-
guidance. a The red and blue vector fields denote the DS generating
clockwise ( f2) and counter-clockwise ( f1) motions respectively. The
blue and red portions of the trajectory are generated using f1 and f2
respectively. The gray portion denotes the transition phase from f2 to
f1.bThe upper row shows the result of human-guidance detection along
with the task-adaptation. The external forces at time 0.3s (which are

restrictive as the power is negative) is detected as intentional. Comply-
ing to this intentional interaction allows the robot to detect the intended
task ( f1) and switch accordingly. The lower row shows the comparison
with impedance control (without human-guidance detection) where low
impedance gains lead to poor tracking performance and high gains lead
to rigid behaviors where task-adaptation is no longer possible. The sim-
ulation parameters are specified in “Appendix A.5” (color figure online)

h smoothly approaches 1. It can be seen that the estimated
human-force Fh , after a short delay, smoothly converges
to Fe. As the result, the control loop transit to the admit-
tance mode (ẋd = ẋa) This allows the simulated-human to

approach its goal (x = 1) around t = 6s through the expected
compliant behavior. Upon human retrieval, the energy of
the tank dissipate (due to P̃d ) and control mode switches
to motion tracking ẋd = ẋt . This enables the robot to follow
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Fig. 9 Illustration of clearpath ridgeback mobile-robot with Universal
UR5 robotic-arm. Themotions are generated by the learnedDS from the
current position of the end-effector toward the corresponding attractor
to perform a specific task (color figure online)

the motion perfectly and reach x = 0. At t = 9s, we apply a
sudden transient force to the robot (Fe = 10 for 5ms every
50ms). Due to the lack of consistency, this external force
is rejected and the motion-tracking is preserved. The last
subgraph shows the results of a fixed admittance controller
using different damping gains. This graph clearly shows that
the proper gain for tracking and human-interaction are drasti-
cally different; i.e., 100 and 1 respectively. The intermediate
values are also ineffective in delivering a satisfactory behav-
ior. Usually, one behavior needs to be sacrificed for the other.
One can think of traditional variable admittance control for
this case (i.e., varying Da over time). However, as discussed
before, obtaining a satisfactory tracking behavior and ensur-
ing the stability is not trivial.

It is interesting to note the steady-state error of the
simulated-human at t = 6s where the target (x = 1) is not
precisely reached. This error is partially due to the choice
of the simulated-human; the PD-control in Eq. 11. Further-
more, even after reaching the target precisely, a simulated
agent is required to keep exerting forces in order to obtain
h = 1 and remove the effect of ẋt in Eq. 1. This suggests that
beside adapting the compliance toward intentional forces,
it is essential for effective interactions to adapt the task-
specific motions (i.e., ẋt ) as well. In the next two examples,
we show that the reactivity and adaptability of dynamical
systems along with the proposed detection algorithm allows
for such interactions.

In our second example, we use a 2-dimensional system
to better illustrate the reactivity of DS. Figure 7 shows the
simulation results. The robot starts in the tracking mode pre-
cisely following the DS vector field. In t ∈ [3, 6], human
guidance is detected where the simulated human intends to
go to x = [0.5, 0.5]T . Upon detecting human guidance, the
robot becomes compliant and the human can drive the robot
with small forces (as shown immediately after the detection
t ∈ [3.5, 6]). At t = 6s, the simulated-human stops exert-

ing forces, which results in dissipating of the energy in the
tank and vanishing h. This enables the robot to go back to
motion-tracking mode and approaches the equilibrium point
following the vector field. This interaction shows the reac-
tivity of the DS where the generated desired trajectories are
different before and after humanguidance.This canbe advan-
tageous over simple methods where the human guidance are
simply damped and the robot smoothly goes back to pre-
interaction trajectories.

Figure 8 shows the result for case where we apply motion
adaptation using our previous method (Khoramshahi and
Billard 2018). In this simulated example, two DS are con-
sidered: f1 and f2 generating clockwise and anti-clockwise
motions respectively. In this scenario, the robot starts per-
forming f2 and a simulated human joins the interaction at
t = 0.3 and intends to perform f1. To do so, the simulated
human applies forces as Fe = −20(ẋ − f1(x)). The first row
of plots shows the results for our variable admittance con-
trol. The first plot shows how the human guidance is detected
where h approaches 1 between t = 0.4 and 0.6. The second
plot shows the human effort starting at t = 0.3 and trying
to decelerate the robot. After t = 0.4 (where the guidance
is detected h � 1), the human injects energy to demonstrate
his/her intention ( f1). The last plot shows the tracking behav-
ior which in this simulation assumed to be a perfect tracking
case. The second row of plots shows our comparison with a
fixed impedance controller. We tested three different condi-
tions.

A low impedance (Di = 4) results in switching across
task, however, the tracking performance of the robot is unsat-
isfactory.AHigh impedance (Di = 40) results in satisfactory
tracking behavior, however, the switching is not possible any-
more due to limits of human forces (2N in this case). This is
verified in the third casewhere increasing this limit (from2 to
20N with Di = 40) leads to a successful switching. It can be
seen that in all these three cases, the duration that human tries
to decelerate the robot is longer than the variable admittance
control. This also results in slower adaptation across tasks.
This simulation clearly shows how both compliant and track-
ing behavior can be achieved through our variable admittance
control with human guidance detection.

6 Experimental evaluations

For our experiments, we employ a Clearpath ridgeback
mobile-robot with Universal UR5 robotic-arm mounted on
the top of the base; see Fig. 9. Using the force-torques sensor
(Robotiq FT300) mounted on the end-effector, we control
the arm in admittance mode. For our motion planning, we
trained several DS as illustrated in Fig. 10. The details of
the admittance control are provided in “Appendix .A.6”. To
train these models, we collected 25 demonstration per task
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Fig. 10 Generated desired trajectory using the trained DS systems for different reaching tasks. The square and star marker show the initial and
target position respectively (color figure online)

where the human-user moved the end-effector of the robot.
We tested our proposed method in the following three differ-
ent scenarios.

6.1 Null DS

In the first case, we use ẋt = 0 (i.e., ẋd = ẋa). In this man-
ner, the robot maintains a fixed position and only reacts to
the human guidance. This case is useful when it is required
from the robot to maintain the position of an object or a
tool in the workspace. The results are shown in Fig. 11. The
first plot shows the external forces where in t ∈ [5, 10] and
t ∈ [25, 30] robot was perturbed. It can be seen that these
disturbances are not detected as human guidance and there-
fore rejected; i.e., the robot maintains its positions. During
t ∈ [15, 20] and t ∈ [30, 35], human interacts with the robot
as to move to a desired position. These human interactions
are shortly (i.e., after around .5s) detected and the compli-
ant behavior is provided through admittance as to move in
accordance with external forces. Moreover, the comparison
between desired and real shows that the robot provides a
satisfactory behavior (RMS error of 0.02).

6.2 Nominal DS

In the second case, we use one of the trained DS to perform
a reaching task (i.e., Reach right). The results are shown
in Fig. 12. The robot starts from an initial condition and
follows the DS velocities to reach its target; i.e., x = 0.
After reaching the target, the robot rejects the disturbances
around t = 10 and maintains its position rigidly. Upon
human-guidance at t = 15, the robot becomes compliant
so as to follow the human guidance passively. When human
retreats from the interaction at t = 32, the robot smoothly
switches tomotion-planningmode and follows theDS veloc-
ities and consequently reach its target. The velocity profiles
(plotted separately for each dimension) show how the desired
velocity smoothly transits between admittance-velocities and
DS-velocities.

6.3 Adaptive DS

Finally, we present an adaptive case where the robot switches
between several reaching tasks plotted in Fig. 10. To have the
proactive following behavior (i.e., while following, the robot
recognize the human intention and starts injecting velocities),
we changed our formulation to:

ẋd = ẋa + ẋt (12)

In this manner regardless of h (which only affects the admit-
tance control), the robot tries to follow the DS-generated
velocities. However, in this case, we use our adaptive mech-
anism previously presented in Khoramshahi and Billard
(2018) to generate ẋt . Given a set of DS for different reach-
ing motion, the adaptive mechanism uses the most similar
DS to the human-guidance. The results are illustrated in
Fig. 13 The robot starts in the retreat task where it makes
the workspace available to the human-user. Upon human-
guidance, the robot becomes compliant and follows the
human motion. While doing so, the robot adapts to the
most similar DS (Reach left in this case). Human observ-
ing that his/her intended task is being performed, leaves
the interaction while the robot leads and perform the task
autonomously. This transition repeated several times where
the robot switched to different tasks. In one case (around
t = 31), due to partial human-demonstration, the robot ini-
tially switch to a task that it is not intended by the user.
Therefore, the human stays in the interaction and provides
more demonstrations in order to make sure that the robot
recognizes his /her intention. Moreover, the results show
that disturbances are rejected successfully and the robot only
complies with the human guidance. Furthermore, we can see
that the robot adapts its role based on the human-interaction
from stiff-leader to compliant-follower,passive-follower and
proactive-follower.

123



Autonomous Robots

Fig. 11 The result of human–robot interaction in the case of null DS (ẋt = 0). A human guidance is presented to the robot and detected during
t ∈ [15, 20] and t ∈ [30, 35]. The disturbances (t ∈ [5, 10] and t ∈ [25, 30]) are successfully rejected and the robot maintain its position (color
figure online)

7 Discussion

In this section, we discuss our theoretical and experimen-
tal results. Furthermore, we provide discussion on practical
limitations and possible improvements for our control archi-
tecture.

7.1 Detection speed and accuracy

In our detection algorithm for human-guidance, the speed and
accuracy are controlled by Em , Et , and P̃d . The theoretical
aspect of the detection time is reported in “Appendix A.1”.

Lower values (for Em , Et , and P̃d ) result in faster but
less accurate detections where the built-up energy due to
the disturbances passes the trigger level and is detected as
human-guidance. Higher values, on the other hand, lead
to more accurate but slower detection where the human is
required to exert higher force for a longer time to pass the trig-
ger level. This leaves the designer with a trade-off between
speed and accuracy. A practical approach is to investigate
the expected disturbances in the environment and set these
parameters marginally higher as to filter such disturbances.
Conversely, one can investigate the expected forces from the
human-guidance and set the parameters marginally lower as
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Fig. 12 The result of human–robot interaction in the case of a nominal DS (i.e., reaching a target position). The human-guidance is detected during
t ∈ [18, 35] where the human moves the robot compliantly in the workspace regardless of the DS-generated velocities (color figure online)

to detect such guidances. Furthermore, this can be treated
as a two-class classification problem which is on our list of
future works.

7.2 Low stiffness for fast motions

The stiffness of the robot during the detection delay might
appear inconvenient to the human user.While this is tolerable
when the robot maintains a fixed position, the stiffness of the
robot during a fast motion might undermine the comfort and
safety of the user. The tracking performance of fast motion
can be sacrificed by lowering the stiffness in order to avoid

such issues. To do this, we propose the following formulation
for the admittance controller:

Maẍa = −Daẋa + h̃Fe (13)

where

h̃ = max{h(ẋ), h} (14)

where h is a function based on the robot’s velocity providing
a minimum required compliance. This function can be of the
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Fig. 13 The results for adaptiveDS for the robotic armwhere the proposed algorithm is used to adapt themotion only to the detected human-guidance
(color figure online)

following piecewise linear form:

h(ẋ) =

⎧⎪⎨
⎪⎩
0 for ẋ < v

(ẋ − v)/(v̄ − v) for v < ẋ < v̄

1 for v̄ < ẋ

(15)

where below v no additional compliance is required and the
robot focuses on tracking performance (unless human guid-
ance is detected which increases h). For velocities higher
than v̄, the robot tracking performance in sacrificed (only if
there are external forces) for safety issues. The linear inter-
polation part allows for a smooth transition and avoiding the
human to experience sudden feeling of blockage or release.

7.3 Dampingmatrix and variable admittance

As the initial step in this work, we only used diagonal damp-
ing matrices of form Da = d In for simplicity. Similar to our
previous work (Kronander and Billard 2016), we can pro-
vide a different damping behavior in the direction of ẋt vs.
other directions. The formulation of this case is presented
in “Appendix A.4”. However, to have different damping

behavior in a specific direction of the space, we can use the
following admittance formulation:

Maẍa = −Daẋa + hGFe (16)

where G ∈ Rn×n is a diagonal matrix with different diago-
nal elements. Having these different input gains allows the
admittance to exhibit different stiffness in different direction.
Similarly, ourDS-based admittance controller is also suitable
to deliver task-specific compliant behavior. Consider the fol-
lowing controller:

Maẍa = −Daẋa + H(x, ẋ)Fe (17)

where H : Rn �→ Rn modulates the robot’s admittance
based on the robot’s state. This formulation allows the robot
to vary its compliance in different region of the workspace.
A simple example is illustrated in Fig. 14 where the robot
provides a compliant behavior only in the designated region
and focuses on the tracking of the DS velocities elsewhere.
Thismapping can be learned fromdemonstration and be used
in this formulation without any loss of stability and tracking
performance.
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Fig. 14 State-dependent compliant through admittance control and
state-dependent motion planning through DS. The robot reacts pas-
sively to the external force proportionally to h. The external forces are
generated using a Gaussian noise. The simulation is repeated five time
(color figure online)

7.4 Guidance detection for an arbitrary link

In this work, we only focused on the external forces exerted
on the end-effectorwhere the force-torque sensor ismounted.
Therefore, the robot remains stiff toward forces applied to
an arbitrary link; due to high-gain position/velocity con-
trol or non-back-drivable joints. To overcome this, one can
implement the admittance controller at joint level (e.g., as in
Kaigom and Roßmann 2013) and filter the external forces
(applied to each joint) using our proposed method. The
designer would have the choice to treat the joints either in
a decoupled (i.e., one h-variable for each joint) or coupled
manner (i.e., a global h-variable). In the decoupled form,
intentional interaction with an arbitrary link results in com-
pliant behavior only in the same link, whereas in the coupled
form, the full-body becomes compliant.

8 Conclusion

In this work, we presented a simple detection algorithm for
human-guidance during pHRI. We investigated our algo-
rithm theoretically where we showed how external forces
consistency (i.e., autocorrelation) is used for detection. The
simulation and experimental results show that this method is
effective in distinguishing between disturbances and human-
guidance input. For our detection algorithm, no model of the
robot and environment is required, and it is easy to implement
(i.e., few algebraic equations). The transparency of its param-
eters (i.e., their physical meaning) allows for simple tuning in

order to filter the disturbances and pass the human-guidance.
Furthermore, we presented DS-based variable admittance
controller as a tool to deliver both tracking and compli-
ant behaviors. We varied the admittance simply through the
admittance ratio (i.e., the input gain for the external forces).
In this manner, we avoided raising typical instability issues
to the time-variability. Even though the variability of the
admittance is limited (i.e., a fixed ratio between inertia and
damping part), the resulting behavior is effective in rejecting
disturbances and complying with human-guidance forces.
Finally, we used the output of our human-detection algo-
rithm (h) to vary the admittance controller yielding a robot
that adapts its role based on the human-interaction. In the
absence of human-guidance, the robot is an autonomous (i.e.,
a stiff-leader) focusing on the motion tracking and execut-
ing the task, while in the presence of human guidance, the
robot is a passive follower focusingon trackinghuman inputs.
Moreover, we showed through experimental result that the
proactive following behavior can be achieved using adap-
tive DS. We analyzed our method rigorously and provided
sufficient conditions for stability and passivity.
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Appendix AMathematical details

A.1 Human-guidance detection speed

In order to relate our algorithm to methods used in the lit. of
collision detection, we can investigate the time-derivate of h
as follows:

ḣ =
{
0 E ≤ Et

Ė/(Em − Et ) E > Et
(18)

By replacing Ė from Eq. 7 and the approximation that P̃o =
h P̃i (since, in the discrete system, P̃o(k) = h(k − 1)P̃i (k −
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Fig. 15 Simulated result for accumulated energy in the storage tank
based on the magnitude and duration of external force (color figure
online)

1)), we have

ḣ = −γ (h − 1) (19)

where γ = (P̃i − P̃d)/(Em − Et ). It shows that P̃i > P̃d ,
h → 1 and otherwise h → 0. The solution to this equation
for an arbitrary initial condition (h(0)) is:

h(t) = (h(0) − 1)e−γ t + 1 (20)

The rise time (i.e., to reach 0.9 from 0) for a fixed γ is Tr =
2.32γ −1. Moreover, the energy first needs to pass Et which
requires Tt = Et/P̃i . In total the time to reach h = 0.9 when
the tank is empty E(0) = 0 for constant P̃i > 0 is

Tu = 2.32(Em − Et )/(P̃i − P̃d) + Et/P̃i (21)

Same can be derived for the case where human retreats from
the interaction P̃i = 0. In this case, we reach h = 0 from
h(0) = 0.9 given the following time constant.

Td = 2.32(Em − Et )/P̃d (22)

Note that non-consistent interaction P̃i < 0 decrease h faster
by reducing the energy in the tank.

Figure 15 shows the accumulated energy based on the
magnitude and duration of an external force. By choosing a
level set (i.e., Em), we can consider the tank as a classifier
that passes forces with certain consistency (i,e., magnitude,
duration).

A.2 Autocorrelation of external force

Our human detection algorithm can be investigated from a
statistical point of view. First, let us assume diagonal inertia
and damping matrices in Eq. 5. Let m j and d j be the inertia
and damping for the j th dimension ( j ∈ {1, ..., n}). The

admittance dynamics in Eq. 5 can be written as a low-pass
filter in the following discrete form for each dimension.

˙̃x j (k) = β j ˙̃x j (k − 1) + (1 − β j )d
−1
j Fe, j (23)

where ˙̃x j (k) is the virtual admittance velocity for the time-
step k and j th dimension. Fe, j is the external force in j th
dimension, and β j = 1 − m−1

a d jΔt where Δt is sam-
pling rate. Therefore, the input power at time-step k can be
expanded as:

P̃in, j (k) = ˙̃x j (k)Fe, j (k)

= d−1
j (1 − β j )

∞∑
l=1

βl−1
j Fe, j (k − l)Fe, j (k)

(24)

The accumulated energy due to P̃i can be computed as:

E j (n) =
n∑

k=−∞
P̃i (k)

=
n∑

k=−∞
d−1
j (1 − β j )

∞∑
l=1

βl−1
j Fe, j (k − l)Fe, j (k)

= d−1
j (1 − β j )

∞∑
l=1

βl−1
j

n∑
k=−∞

Fe, j (k − l)Fe, j (k)

(25)

by defining the autocorrelation function with lag l over the
external force at time step n as follows

ρ j (l) =
n∑

k=−∞
Fe, j (k)Fe, j (k − l) (26)

we can rewrite the energy of the tank as:

E j (n) = d−1
j

∞∑
l=1

βl−1
j ρ j (l)

∞∑
l=1

βl−1
j

(27)

Note that, we used the expansion of (1 − β j )
−1. Therefore,

the input energy is the weighted averaged of autocorrelation
with different lags.

A.3 Energy analysis

In this section, we investigate the passivity of our control
architecture. First, we assume the following decomposition
for the dynamical system.

f (x) = −∇x V (x) + f̃ (x) (28)
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Where V (x) ∈ R+ is a potential function and f̃ : Rn �→ Rn

is a residual that accounts for the non-conservative part of the
DS. The stability of motion-generation can be investigated
with the assumptions of perfect tracking (ẋ = ẋt ) as follows:

V̇ (x) = ∇x V (x)ẋt = −||∇x V (x)||2 + ∇x V (x)T f̃ (x) (29)

The Lyapunov stability of the DS can be guaranteed if

∇x V (x)T f̃ (x) < ||∇x V (x)||2 (30)

which indicates that the conservative part dominates the non-
conservative part and vanishes over time.

In the case of perfect tracking (ẋ = ẋd ), we can write

ẋ = h̄ ẋt + ẋa (31)

where h̄ = 1 − h. initially, we limit our analysis to Da =
daIn where da ∈ R

+. Let’s consider the following storage
function:

W = 1

2
ẋ T Ma ẋ + daV (x) (32)

Using the admittance dynamics (Eq. 3), the time derivative
of this storage function is

Ẇ = ẋ T (h̄Ma ẍt − ḣMa ẋt − da ẋa + hFe)

+ da∇x V (x)ẋ
(33)

ẍt can be computed based on the Jacobian of f (x) as ẍt =
f ′(x)ẋ .

Ẇ = hFT
e ẋ − ẋ T (daIn − h̄Ma f

′(x))ẋ
+ ẋ T (h̄daIn − ḣMa)ẋt + da∇x V (x)T ẋr

(34)

Using Eqs. 2 and 28, and defining the human-induced error
as ėh = ẋr − h̄ ẋt we can write

Ẇ =hFT
e ẋ − ẋ T (daIn − h̄Ma f

′(x))ẋ + h̄hda∇x V (x)T ẋt

h̄da ẋ
T f̃ (x) + hda∇x V (x)T ėh − ḣ ẋ Tt Ma ẋ

(35)

Let’s first investigate the two boundary conditions (h = 1
and h = 0 with ḣ = 0). For h = 0 (the absence of human
guidance), we have

Ẇ |h=0 = −ẋ T (daIn − Ma f
′(x))ẋ + da ẋ

T f̃ (x) (36)

The system is stable if da > λmax (Ma f ′(x)). This means
that forces generated by the damping part of the admittance
(da ẋ) should dominate the centrifugal forces generated by
DS (Ma f ′(x)ẋ). Moreover, the non-conservative part of DS

(ẋ T f̃ (x)) might violate the stability of the system. Neverthe-
less, having a damped admittance behavior in h = 0 results
in ẋa → 0, therefore ẋ = ẋt . Given this, we can rewrite

ẋ Tt f̃ (x) = (−∇x V (x) + f̃ (x))T f̃ (x)

= −∇x V (x)T f̃ (x) + f̃ (x)2 (37)

Therefore, the system is stable if || f̃ (x)||2 ≤ ∇x V (x)T f̃ (x)
which includes f̃ (x) = 0. Finally, note that Ẇ < 0 only
proves the stability of the system. The passivity of the map-
ping Fe �→ ẋ is ill-defined since the term FT

e ẋ does not
appear in Ẇ for h = 0.

For h = 1 (the presence of human guidance), we have

Ẇ |h=1 = FT
e ẋ − da ||ẋ ||2 + da∇x V (x)T ẋ (38)

The system exchanges energy through the input port FT
e ẋ .

The passivity of the admittance is guaranteed since da > 0.
The last term (Ph) shows how the human can inject energy
intoDSpotential functionby changing the state of the system.

During transitions (ḣ = 0), DS dissipates energy since
∇x V (x)T ẋt < 0 (from Eq. 29) and h̄h > 0. Since we
modulate ẋt by (1 − h), sudden changes of h result in an
acceleration of −ḣMa ẋt . This temporary energy generation
(which is bounded) can either be neglected or handled by
setting a limit on the increase of h based on the state of the
system. The other solution is to avoid modulating ẋt (as in
Eq. 1) and to use the following:

ẋd = ẋt + ẋa (39)

This leads to a simpler energy analysis as follows:

Ẇ = hFT
e ẋ − ẋ T (daIn − Ma f

′(x))ẋ + da ẋ
T f̃ (x) (40)

In this formulation, the desired velocity generated by the
DS are always present. This might be a drawback for cases
where this velocity perturbs the human during h = 1 or
deteriorate the compliant behavior. However, in cases where
human guidance has the purpose of small corrections, the
presence of this velocity is beneficial. Moreover, in proac-
tive scenarios, even during h = 1, it is necessary for the
robot to not only rely on ẋa but also generate and follow ẋt .
It is intuitive to see that ẋa accounts for passive-following
behavior and ẋt can account for pro-active following behav-
ior during h �= 0. For better illustration, the power exchanges
for the 1D simulation case are presented in Fig. 16.
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Fig. 16 Detection of human guidance for motion adaptation using DS.
The graph with no axis is h over time (color figure online)

A.4 Asymmetric dampingmatrix

Without any loss of passivity, we can have the following
admittance behavior:

Maẍa = −d�

a ẋ
�

a − d⊥
a ẋ⊥

a + hFe (41)

where ẋa is decomposed into two parts: ẋ�

a parallel and ẋ⊥
a

orthogonal to ẋt with their respective damping gains (d�

a and
d⊥
a ). The resulting damping matrix is:

Da = QΛQT (42)

where the columns of Q ∈ Rn×n are unit vectors that span Rn

and the first column is parallel to ẋd s. Λ is diagonal matrix
with elements equal to d⊥

a except the first one being d�

a . The
stability and passivity analysis follows the same procedure
only d�

a appears instead of da in Eq. 35.

A.5 The simulation parameters

The parameters used for the 1D simulations are as follows:
Ma = 1, Da = 10, Em = 2, Et = 1, P̃d = 2, h(0) = 0,
E(0) = 0, ẋ(0) = 0, x(0) = 1, ẋa(0) = 0, dt = 1ms. The
dynamics system: ẋt = −3x but saturated in [−2, 2]. The
external forces:

Fe =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N (0, 36) 0 < t < 2

−20(x − 1) − 10ẋr 3 < t < 6

10 9 < t < 9.005

0 elsewhere

(43)

However, the forces for the simulated human (second row) is
saturated between 5 and−5, and the pulse (third row) repeats
10 times every 50ms.

For the 2D simulation example, we use Ma = diag{2, 2},
Da = diag{4, 4}, Em = 2, Et = 1, P̃d = 2, h(0) = 0,
E(0) = 0, ẋ(0) = [0, 0], x(0) = [−.9,−.6], ẋa(0) = [0, 0],
dt = 1ms. The dynamical system is:

f (x) =
[−1.5 1.5
−2.4 −6

]
x (44)

saturated at 2m/s.
For the adaptive case (Fig. 8),weuseM = diag{1, 1},C =

diag{0, 0}, ẍ(0) = [0, 0], ẋ(0) = [0, 0], x(0) = [.022, 0],
Da = diag{2, 2}, Ma = diag{0.05, 0.05}, ẋa(0) = [0, 0],
h(0) = 0,P̃d = .2, E(0) = 0, Et = .1, Em = .2, dt = 1ms.
The dynamical system specified in the polar coordinate is:

{
θ̇ = ±10

ṙ = −15(r − 0.022)
(45)

where x1 = r cos(θ) and x2 = r sin(θ). f1 represent the
counterclockwise and f2 the clockwise rotation. The external
forces are simulate as

Fe = −20(ẋ − f1(x)) (46)

where the norm of the output is limited to 2N . In one of
the comparisons with impedance control (i.e., higher human
effort), we increase this limit to 20N .

A.6 The robot parameters

For the arm admittance, we use the following parameters.

Ma = diag{6, 6, 6, 1, 1, .5}
Da = diag{60, 60, 60, 15, 15, 15}
dt = 8ms

(47)

However, for the virtual admittance use the following values.

Ma = diag{2, 2, 2, 1, 1, 1}
Da = diag{2, 2, 2, 2, 2, 2} (48)

For the energy tank, we use Em = 4, Et = 2 , P̃d = 2.5.

A.7 Media

A demonstration of our method can be viewed at https://
youtu.be/HrR85-IP-Qo.

A.8 Source codes

AC++ implementation of ourmethod can be found at https://
github.com/epfl-lasa/ds_admittance_control/tree/ridgeback.

123

https://youtu.be/HrR85-IP-Qo
https://youtu.be/HrR85-IP-Qo
https://github.com/epfl-lasa/ds_admittance_control/tree/ridgeback
https://github.com/epfl-lasa/ds_admittance_control/tree/ridgeback


Autonomous Robots

References

Bussy, A., Gergondet, P., Kheddar, A., Keith, F., & Crosnier, A. (2012).
Proactive behavior of a humanoid robot in a haptic transportation
task with a human partner. In IEEE RO-MAN (pp. 962–967).

Calinon, S., Bruno, D., & Caldwell, D. G. (2014). A task-parameterized
probabilistic model with minimal intervention control. In IEEE
international conference on robotics and automation (ICRA) (pp.
3339–3344).

Campeau-Lecours, A., Otis, M. J., & Gosselin, C. (2016). Modeling of
physical human–robot interaction: Admittance controllers applied
to intelligent assist devices with large payload. International Jour-
nal of Advanced Robotic Systems, 13(5), 167.

Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., & Fraisse, P.
(2016). Collaborative manufacturing with physical human–robot
interaction. Robotics and Computer-Integrated Manufacturing,
40, 1–13.

Cho, C.-N., Kim, J.-H., Kim, Y.-L., Song, J.-B., & Kyung, J.-H. (2012).
Collision detection algorithm to distinguish between intended
contact and unexpected collision. Advanced Robotics, 26(16),
1825–1840.

Corteville, B., Aertbeliën, E., Bruyninckx, H., De Schutter, J., & Van
Brussel, H. (2007). Human-inspired robot assistant for fast point-
to-point movements. In 2007 IEEE international conference on
robotics and automation (pp. 3639–3644). IEEE.

De Luca, A., Albu-Schaffer, A., Haddadin, S., & Hirzinger, G. (2006).
Collision detection and safe reaction with the DLR-III lightweight
manipulator arm. In 2006 IEEE/RSJ international conference on
intelligent robots and systems (pp. 1623–1630). IEEE.

Dietrich, A., Wimbock, T., Albu-Schaffer, A., & Hirzinger, G. (2012).
Reactivewhole-body control:Dynamicmobilemanipulation using
a large number of actuated degrees of freedom. IEEE Robotics &
Automation Magazine, 19(2), 20–33.

Duchaine, V., & Gosselin, C. (2009). Safe, stable and intuitive control
for physical human–robot interaction. In 2009. ICRA’09. IEEE
international conference on robotics and automation (pp. 3383–
3388). IEEE.

Duchaine, V.,&Gosselin, C.M. (2007). Generalmodel of human–robot
cooperation using a novel velocity based variable impedance con-
trol. In Second joint EuroHaptics conference and symposium on
haptic interfaces for virtual environment and teleoperator systems
(pp. 446–451). IEEE.

Evrard, P., & Kheddar, A. (2009). Homotopy switching model for dyad
haptic interaction in physical collaborative tasks. Third joint Euro-
Haptics conference and symposium on haptic interfaces for virtual
environment and teleoperator systems (pp. 45–50).

Ferraguti, F., Preda, N., Manurung, A., Bonfe, M., Lambercy, O.,
Gassert, R., et al. (2015). An energy tank-based interactive con-
trol architecture for autonomous and teleoperated robotic surgery.
IEEE Transactions on Robotics, 31(5), 1073–1088.

Ferraguti, F., Secchi, C., & Fantuzzi, C. (2013). A tank-based approach
to impedance control with variable stiffness. In 2013 IEEE inter-
national conference on robotics and automation (ICRA) (pp.
4948–4953). IEEE.

Gribovskaya,E.,Kheddar,A.,&Billard,A. (2011).Motion learning and
adaptive impedance for robot control during physical interaction
with humans. In IEEE international conference on robotics and
automation (ICRA), pp. 4326–4332.

Groten, R., Feth, D., Peer, A., & Buss, M. (2010). Shared decision
making in a collaborative task with reciprocal haptic feedback-
an efficiency-analysis. In 2010 IEEE international conference on
robotics and automation (ICRA) (pp. 1834–1839). IEEE.

Haddadin, S., Albu-Schaffer, A., De Luca, A., & Hirzinger, G. (2008).
Collision detection and reaction: A contribution to safe phys-
ical human–robot interaction. In 2008. IROS 2008. IEEE/RSJ

international conference on intelligent robots and systems (pp.
3356–3363). IEEE.

Haddadin, S., De Luca, A., & Albu-Schäffer, A. (2017). Robot colli-
sions: A survey on detection, isolation, and identification. IEEE
Transactions on Robotics, 33(6), 1292–1312.

Hashtrudi-Zaad, K., & Salcudean, S. E. (2001). Analysis
of control architectures for teleoperation systems with
impedance/admittance master and slave manipulators. The
International Journal of Robotics Research, 20(6), 419–445.

He, S., Ye, J., Li, Z., Li, S., Wu, G., & Wu, H. (2015). A momentum-
based collision detection algorithm for industrial robots. In
2015 IEEE international conference on robotics and biomimet-
ics (ROBIO) (pp. 1253–1259). IEEE.

Hogan, N. (1988). On the stability of manipulators performing contact
tasks. IEEE Journal on Robotics and Automation, 4(6), 677–686.

Jlassi, S., Tliba, S.,&Chitour, Y. (2014). An online trajectory generator-
based impedance control for co-manipulation tasks. In 2014 IEEE
haptics symposium (HAPTICS) (pp. 391–396). IEEE.

Kaigom, E. G., & Roßmann, J. (2013). A new erobotics approach:
Simulation of adaptable joint admittance control. In 2013 IEEE
international conference onmechatronics and automation (ICMA)
(pp. 550–555). IEEE.

Kang, S., Komoriya, K., Yokoi, K., Koutoku, T., Kim, B., & Park, S.
(2010). Control of impulsive contact force betweenmobile manip-
ulator and environment using effectivemass and damping controls.
International Journal of Precision Engineering and Manufactur-
ing, 11(5), 697–704.

Khansari-Zadeh, S. M., & Billard, A. (2011). Learning stable nonlinear
dynamical systems with Gaussian mixture models. IEEE Transac-
tions on Robotics, 27(5), 943–957.

Khoramshahi, M., & Billard, A. (2018). A dynamical system
approach to task-adaptation in physical human–robot interaction.
Autonomous Robots, 1(1), 1–1.

Khoramshahi, M., Laurens, A., Triquet, T., & Billard, A. (2018). From
human physical interaction to online motion adaptation using
parameterized dynamical systems. In IEEE international confer-
ence on robotics and automation (ICRA) (p. 1).

Kim, Y. J., Seo, J. H., Kim, H. R., & Kim, K. G. (2017). Impedance
and admittance control for respiratory-motion compensation dur-
ing robotic needle insertion—a preliminary test. The International
Journal of Medical Robotics and Computer Assisted Surgery,
13(4), e1795.

Kouris, A., Dimeas, F., & Aspragathos, N. (2018). A frequency domain
approach for contact type distinction in human–robot collabora-
tion. IEEE Robotics and Automation Letters, 3, 720–727.

Kronander, K., & Billard, A. (2016). Passive interaction control with
dynamical systems. IEEE Robotics and Automation Letters, 1(1),
106–113.

Landi, C. T., Ferraguti, F., Sabattini, L., Secchi, C., & Fantuzzi, C.
(2017). Admittance control parameter adaptation for physical
human–robot interaction. In 2017 IEEE international conference
on robotics and automation (ICRA) (pp. 2911–2916). IEEE.

Lecours, A.,Mayer-St-Onge, B.,&Gosselin, C. (2012). Variable admit-
tance control of a four-degree-of-freedom intelligent assist device.
In 2012 IEEE international conference on robotics and automation
(ICRA) (pp. 3903–3908). IEEE.

Li, Y., Tee, K. P., Chan,W. L., Yan, R., Chua, Y., &Limbu, D. K. (2015).
Continuous role adaptation for human–robot shared control. IEEE
Transactions on Robotics, 31(3), 672–681.

Li,Y.,Yang,C.,&He,W. (2016). Towards coordination in human–robot
interaction by adaptation of robot’s cost function. In International
conference on advanced robotics and mechatronics (ICARM) (pp.
254–259).

Li, Z.-J., Wu, H.-B., Yang, J.-M., Wang, M.-H., & Ye, J.-H. (2018). A
position and torque switching control method for robot collision

123



Autonomous Robots

safety. International Journal of Automation and Computing, 15,
1–13.

Madan, C. E., Kucukyilmaz, A., Sezgin, T. M., & Basdogan, C. (2015).
Recognition of haptic interaction patterns in dyadic joint object
manipulation. IEEE Transactions on Haptics, 8(1), 54–66.

Makarov, M., Caldas, A., Grossard, M., Rodriguez-Ayerbe, P., &
Dumur, D. (2014). Adaptive filtering for robust proprioceptive
robot impact detection under model uncertainties. IEEE/ASME
Transactions on Mechatronics, 19(6), 1917–1928.

Medina, J. R., Duvallet, F., Karnam, M., & Billard, A. (2016). A
human-inspired controller for fluid human–robot handovers. In
2016 IEEE-RAS16th international conference onhumanoid robots
(Humanoids) (pp. 324–331). IEEE.

Medina, J. R., Lee, D., & Hirche, S. (2012). Risk-sensitive optimal
feedback control for haptic assistance. In IEEE international con-
ference on robotics and automation (ICRA) (pp. 1025–1031).

Modares, H., Ranatunga, I., Lewis, F. L., & Popa, D. O. (2016).
Optimized assistive human–robot interaction using reinforcement
learning. IEEE Transactions on Cybernetics, 46(3), 655–667.

Mol, N., Smisek, J., Babuška, R., & Schiele, A. (2016). Nested com-
pliant admittance control for robotic mechanical assembly of
misaligned and tightly toleranced parts. In 2016 IEEE interna-
tional conference on systems, man, and cybernetics (SMC) (pp.
002,717–002,722). IEEE.

Oguz, S. O., Kucukyilmaz, A., Sezgin, T. M., & Basdogan, C. (2010).
Haptic negotiation and role exchange for collaboration in virtual
environments. In 2010 IEEE haptics symposium (pp. 371–378).
IEEE.

Pham, H. T., Ueha, R., Hirai, H., & Miyazaki, F. (2010). A study on
dynamical role division in a crank-rotation task from the viewpoint
of kinetics and muscle activity analysis. In 2010 IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS) (pp.
2188–2193). IEEE.

Ranatunga, I., Cremer, S., Popa, D. O., & Lewis, F. L. (2015). Intent
aware adaptive admittance control for physical human–robot inter-
action. In 2015 IEEE international conference on robotics and
automation (ICRA) (pp. 5635–5640). IEEE.

Ranatunga, I., Lewis, F. L., Popa, D. O., & Tousif, S. M. (2017). Adap-
tive admittance control for human–robot interaction using model
reference design and adaptive inverse filtering. IEEE Transactions
on Control Systems Technology, 25(1), 278–285.

Reed, K. B., Peshkin, M., Hartmann, M. J., Patton, J., Vishton, P. M., &
Grabowecky, M. (2006). Haptic cooperation between people, and
between people and machines. In 2006 IEEE/RSJ international
conference on intelligent robots and systems (pp. 2109–2114).
IEEE.

Schindlbeck, C., & Haddadin, S. (2015). Unified passivity-based carte-
sian force/impedance control for rigid and flexible joint robots
via task-energy tanks. In 2015 IEEE international conference on
robotics and automation (ICRA) (pp. 440–447). IEEE.

Shahriari, E., Kramberger, A., Gams, A., Ude, A., & Haddadin, S.
(2017). Adapting to contacts: Energy tanks and task energy for
passivity-based dynamicmovement primitives. In 2017 IEEE-RAS
17th international conference on humanoid robotics (Humanoids)
(pp. 136–142). IEEE.

Sommer, N., Kronander, K., & Billard, A. (2017). Learning externally
modulated dynamical systems. In Proceedings of the IEEE/RSJ
international conference on intelligent robots and systems, EPFL-
CONF-229361.

Stefanov, N., Peer, A., & Buss, M. (2009). Role determination in
human–human interaction. In Third joint EuroHaptics conference,
2009 and symposium on haptic interfaces for virtual environment
and teleoperator systems. World haptics 2009 (pp. 51–56). IEEE.

van der Wel, R. P., Knoblich, G., & Sebanz, N. (2011). Let the force be
with us: Dyads exploit haptic coupling for coordination. Journal
of Experimental Psychology:HumanPerception andPerformance,
37(5), 1420.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mahdi Khoramshahi received his
B.Sc. degree in the Electrical Engi-
neering from Sharif University of
Technology (2004–2009), his M.Sc.
in Electrical Engineering from Uni-
versity of Tehran (2009–2012), and
his PhD in Robotics from EPFL
(2014–2019). He is currently a
post-doctoral researcher at Learn-
ing Algorithm and System Labo-
ratory at EPFL. His research inter-
ests include cognitive robotics,
Human–robot interaction, dynam-
ical systems, control, and machine
learning.

Aude Billard received the M.Sc.
degree in physics from the Swiss
Federal Institute of Technology
in Lausanne (EPFL), Lausanne,
Switzerland, in 1995, and the M.Sc.
degree in knowledge-based sys-
tems and the Ph.D. degree in arti-
ficial intelligence from the Uni-
versity of Edinburgh, Edinburgh,
U.K., in 1996 and 1998, respec-
tively. She is currently a Professor
of micro and Mechanical Engi-
neering and the Head of the Learn-
ing Algorithms and Systems Lab-
oratory, School of Engineering,

EPFL. Her research interests include machine learning tools to sup-
port robot learning through human guidance. This also extends to
research on complementary topics, including machine vision and its
use in human–robot interaction and computational neuroscience to
develop models of motor learning in humans. She received the Intel
Corporation Teaching Award, the Swiss National Science Foundation
Career Award in 2002, the Outstanding Young Person in Science and
Innovation from the Swiss Chamber of Commerce, and the IEEERAS
Best Reviewer Award in 2012. She served as an Elected Member of
the Administrative Committee of the IEEE Robotics and Automation
Society (RAS) for two terms (2006–2008 and 2009–2011) and is the
Chair of the IEEE-RAS Technical Committee on Humanoid Robotics.

123


	A dynamical system approach for detection and reaction to human guidance in physical human–robot interaction
	Abstract
	1 Introduction
	2 Related works
	3 Motion-compliance control
	4 Human-interaction detection
	5 Illustrative example
	6 Experimental evaluations
	6.1 Null DS
	6.2 Nominal DS
	6.3 Adaptive DS

	7 Discussion
	7.1 Detection speed and accuracy
	7.2 Low stiffness for fast motions
	7.3 Damping matrix and variable admittance
	7.4 Guidance detection for an arbitrary link

	8 Conclusion
	Acknowledgements
	Appendix A Mathematical details
	A.1 Human-guidance detection speed
	A.2 Autocorrelation of external force
	A.3 Energy analysis
	A.4 Asymmetric damping matrix
	A.5 The simulation parameters
	A.6 The robot parameters
	A.7 Media
	A.8 Source codes

	References




