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Abstract— In many tasks such as finishing operations, achiev-
ing accurate force tracking is essential. However, uncertainties
in the robot dynamics and the environment limit the force
tracking accuracy. Learning a compensation model for these
uncertainties to reduce the force error is an effective approach
to overcome this limitation. However, this approach requires
an adaptive and robust framework for motion and force
generation. In this paper, we use the time-invariant Dynamical
System (DS) framework for force adaptation in contact tasks.
We propose to improve force tracking accuracy through online
adaptation of a state-dependent force correction model encoded
with Radial Basis Functions (RBFs). We evaluate our method
with a KUKA LWR IV+ robotic arm. We show its efficiency
to reduce the force error to a negligible amount with different
target forces and robot velocities. Furthermore, we study the
effect of the hyper-parameters and provide a guideline for their
selection. We showcase a collaborative cleaning task with a
human by integrating our method to previous works to achieve
force, motion, and task adaptation at the same time. Thereby,
we highlight the benefits of using adaptive force control in
real-world environments where we need reactive and adaptive
behaviours in response to interactions with the environment.

Index Terms— Force Control, Compliance and Impedance
Control, Physical Human-Robot Interaction.

I. INTRODUCTION

Many tasks require robots to enter in contact with arbitrary
surfaces, move on them while applying desired contact
forces. For finishing operations such as polishing or grinding,
the contact force exerted on the surface is a key process
variable, as the amount of force applied directly affects the
material removal rate [1]. Besides following accurately the
desired motion and force profile, the robots should also be
compliant to deal with inaccurate modelling of the surfaces
(e.g., stiffness and location) and real-time disturbances such
as those introduced by humans or unexpected changes in the
environment [2]. This requires the development of suitable
control strategies to regulate the robot movement and inter-
action forces with the environment.

Most of the current strategies are based on impedance
control [3] which regulates the dynamic relationship be-
tween interaction forces and motion deviations through a
mass-spring-damper system. Impedance controllers provide
a compliant behaviour in all phases of a contact task (e.g,
non-contact, transition and contact) but are limited in their
force tracking ability, mainly from partial knowledge of
the environment. To cope with this limitation, two distinct
strategies are usually employed in the literature: impedance
and set-point adaptation. Impedance adaptation adjusts the
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Fig. 1: A robot arm cleans a non-flat surface in collaboration with a human.
It moves circularly on the surface while accurately generating contact forces
(top-left). Through the interaction with the surface, the robot can adapt the
desired force profile to reduce the force error. Through the interaction with
the human, the robot adapts the cleaning area (top-right and bottom-left)
and compliantly retracts from the surface (bottom-right).

impedance parameters online (e.g., inertia, damping, and
stiffness) to improve tracking in response to force, position,
or velocity measurements [4]–[7]. Set-point adaptation ap-
proach improves force tracking by adjusting the impedance
set-point (e.g., the reference position) based on force tracking
error or on real-time estimation of the environment’s change
in stiffness [8]–[12]. To compensate the tracking error due
to environment uncertainties, many works have also focused
on learning control in an iterative manner [13]. Iterative
Learning Control (ILC) aims to improve the task tracking
performance of a system by learning a feed-forward com-
pensation signal based on signals obtained from previous
execution cycles of the tasks. This is particularly useful for
repetitive tasks such as polishing; see [14]–[17] as examples
where ILC is used to correct a reference trajectory profile to
maintain a desired contact force.

Even though the aforementioned works provide accurate
motion and force tracking performance, their robustness to
real-time disturbances is either not mentioned or limited to
small disturbances, such as in the surface location or in the
environment stiffness. They do not address large disturbances
such as those introduced by human interactions. For instance,
let us consider the scenario in Fig. 1 where a robot cleans a
non-flat surface in collaboration with a human operator. At
any moment, the human might want to change the cleaning
area by physically interacting with the robot or stop the
cleaning by breaking the contact with the surface. In such
situations, the robot should not only damp the disturbances
using the impedance control (which is only effective for
small disturbances) but also ”react” and ”adapt” its behaviour
on the fly. To properly react and adapt, the robot is required
to re-plan the execution of the task from the disturbed



state and modify the task based on the interaction with the
environment. These reactivity and adaptability need to be
continuous, smooth, and robust toward human highly dy-
namic behaviour and other uncertainties in the environment.
Representing tasks with time-indexed references for position
and force profiles is the main drawback in current approaches
in achieving fast reactivity toward large disturbances; see
[11], [12], [16], [17] as examples where a time-dependent
representation of the task is used. In contrast, in a state-
dependent and time-invariant task representation, interactions
with the environment can be captured by changes in the
robot’s state which can be used in the modification and re-
planning of the task [18].

In this paper, we exploit time-invariant control through the
Dynamical System (DS) method to provide fast reactivity and
on-the-fly re-planning of trajectories [19]. While for a long-
time, such approach was used to control only trajectories in
free space, recent work showed that it could be extended
to control for impedance when making contact with objects
[20], [21] and when performing physical interaction with
humans [22]. These works could however only control for
stiffness at contact but not for the amount of force applied.
Recently, in [23], we extended this framework to control
explicitly for the amount of forces when coming in contact
with the object. The strategy is based on local modulation
of the robot’s nominal motion to generate contact forces
when the robot is close to the target surface. With this
strategy, a robot can perform contact tasks and react to
human interactions (e.g., stopping the robot, breaking the
contact, and moving the robot arbitrarily), or unexpected
changes in the environment (e.g., the position and orientation
of the surface/object). However, the generation of the desired
contact force is done in open loop without any force feed-
back. It hence assumes that the robot’s dynamics (gravity,
inertia, etc) are compensated for and that the stiffness of
the contact surface is known. This results, in practice, in
errors in the force produced at the end-point. Errors come
from uncertainties about the contact surface (e.g, location
of the surface, normal of the surface, friction), robot model
and measurement noises. Most of these uncertainties are
however structural and can be modelled or corrected for.
This is particularly true for repetitive tasks where the robot
needs to repeat the same motion while maintaining a desired
force profile. The robot can learn and adapt online to these
errors through the interaction with the surface. In this work,
we extend the approach presented in [23] to deal with
uncertainties and improve the force tracking performance
through on-line learning of a state-dependent force correction
model. The advantage of learning a state-dependent force
compensation is that the online adaptation can be deactivated
once the error has been sufficiently reduced and the learned
profile can be re-used later without the need to re-learn. We
present our method in section II, we evaluate it in section
III, and we conclude with a discussion about the method and
results obtained in section IV.

II. METHOD

A. Robot’s dynamics and control

Let us consider the dynamics of a N degrees of freedom
robotic manipulator in the three-dimensional Cartesian space:

M(x)ẍ+C(x, ẋ)ẋ = Fc − Fm (1)
where x ∈ R3 denotes the robot’s position, M(x) ∈ R3×3

the mass matrix, C(x, ẋ)ẋ ∈ R3 the centrifugal forces,
while Fc ∈ R3 and Fm ∈ R3 represent the control and
measured external forces respectively. Eq. 1 assumes that
the gravity forces g(x) ∈ R3 are already compensated. Fc

allows to track a desired velocity profile ẋd ∈ R3 and is
obtained from the DS-impedance controller in [21]:

Fc = D(x)(ẋd − ẋ) = d1ẋd −D(x)ẋ (2)
where D(x) ∈ R3×3 is a state-varying damping matrix,
constructed such that the first eigenvector is aligned with the
desired dynamics ẋd with positive eigenvalue d1 ∈ R+. In
this work, the DS is applied only to the translation of the end-
effector. To control the desired end-effector’s orientation we
use the axis-angle representation (see [23] for more details).
In short, from the measured and desired orientation, the task-
space torque is computed using a PD-like control law. The
control wrench composed of task-space force (i.e., Fc) and
torque is then converted into joint torques using the robot’s
Jacobian matrix J ∈ R6×N .

B. Force adaptation with dynamical systems

In [23], to achieve the desired motion and force profile with
a single DS, we express ẋd as:

ẋd = f(x) + fn(x) (3)
with f(x) the nominal dynamics defining the desired mo-
tion, and fn(x) a modulation term that applies only along
the direction normal to the surface to generate the desired
contact force profile. As a result, Fc becomes:

Fc = d1f(x) + d1fn(x)−D(x)ẋ (4)
The first term represents the driving force along the nominal
dynamics, the third term is the damping force, while the
second term denotes the modulation force along the normal
direction to the surface that we design in [23] as:

fn(x) =
Fd(x)

d1
n(x) (5)

where Fd(x) ∈ [0, Fmax] is the state-dependent desired
force profile with (Fmax > 0). Concerning the desired
motion, we assume that f(x) is designed to bring the robot
in contact with a surface and move it along the surface. We
suppose that the contact surface is non-penetrable and that
we have an explicit expression for the normal vector n(x)
and distance to the surface Γ(x) at all points in space. The
nominal DS should satisfy:{

f(x)Tn(x) = 0 in contact
f(x)Tn(x) > 0 in free motion

(6)

Such dynamics can be learned from human demonstrations
and locally modulated to meet these constraints [18], [24].
The desired orientation is designed to smoothly converge to
n(x) as the distance to the surface is decreased.

Let us now introduce a state-dependent force correction
model F̃ (x,θ) ∈ [-F̃max, F̃max] with F̃max > 0 where



θ = [θ1, θ2, ..., θK ]T is the associated set of parameters of
size K. This correction is added to fn(x) such that:

fn(x) =
Fd(x) + F̃ (x,θ)

d1
n(x) (7)

Inserting Eq. 4 in Eq. 1, substituting fn(x) by Eq. 7,
projecting everything along n(x), and considering that the
robot is in contact (Eq. 6 holds) leads to:

Fd(x)− n(x)TFm = n(x)T
(
M(x)ẍ+C(x, ẋ)ẋ

)
− F̃ (x,θ) + n(x)TD(x)ẋ

(8)

Our objective is then to minimize the error Fe between the
desired and measured contact force along n(x), defined as:

Fe = Fd(x)− n(x)TFm (9)

To this end, one can use the cost function J =
1

2
F 2
e whose

gradient can be used to update the parameters θ:

θ̇ = -εr
∂J

∂θ
= -εr

∂J

∂Fe

∂Fe

∂F̃

∂F̃

∂θ
= εrFe

∂F̃

∂θ
(10)

where εr > 0 is the adaptation rate.
C. Design of the state-dependent force correction model
To design our state-dependent force correction, we opt for a
normalized linear combination of Gaussian Radial Basis ker-
nel functions which is a well-established method in machine
learning [25]. Radial Basis Functions (RBF) are often used
in applications needing approximation or interpolation espe-
cially for their smoothness and nice convergence properties,
making them suitable for online adaptation [26]. Thus, we
design F̃ (x,θ) as follows:

F̃ (x,θ) =

∑K
i=1 θiφ(x− ci)∑K
j=1 φ(x− cj)

φ(x) = exp

(
-||x||2

2σ2

)
(11)

where θi ∈ R and ci ∈ R3 respectively denote the weight
and center position of gaussian i, while σ > 0 defines the
kernel width for the K gaussians. Given Eq. 11, we can
express the gradient F̃ (x,θ) with respect to θi, which can
be used in Eq. 10 to update θ:

∂F̃ (x,θ)

∂θi
=

φ(x− ci)∑K
j=1 φ(x− cj)

(12)

D. Convergence behavior

Let us first assume that the environment dynamics change
much slower than the convergence rate. We also assume that
the K gaussians are uniformly and disjointly activated over
a period T ; i.e., each kernel is visited periodically T/Ks.
The convergence behaviour of our method can be studied by
considering the following form for the force error:

Fe = F̃ (x,θ∗)− F̃ (x,θ)− η(t) (13)
where θ∗ is a unique optimal set of parameters modelling the
force error, while η(t) accounts for unmodelled dynamics.
Let us linearize F̃ (x,θ) with respect to θ around θ∗:

F̃ (x,θ) = F̃ (x,θ∗) +
∂F̃

∂θ

T ∣∣∣∣
θ=θ∗

(θ − θ∗) +O(θ,θ∗) (14)

where O(θ,θ∗) denotes the high-order terms of the Taylor
expansion. Substituting F̃ (x,θ) by Eq. 14 in Eq. 13 gives:

Fe = -S(θ− θ∗) + d(t) (15)

with S =
∂F̃

∂θ

T ∣∣∣∣
θ=θ∗

and d(t) = -O(θ,θ∗)−η(t). Assuming

that the disturbance term d(t) is negligible, the parameters’
dynamics in Eq. 10 can be approximated by:

θ̇ = -εr
∂J

∂θ
= -εr

∂J

∂Fe

∂Fe

∂θ
≈ -εrSTS(θ− θ∗) (16)

The matrix STS being positive semi-definite, θ = θ∗ is
a stable equilibrium. Convergence occurs if the force error
signal is rich enough, which is often referred as the Persistent
Excitation (PE) condition in the literature of adaptive control
[27]. Here, PE condition for θi is satisfied if the area
associated with the ith RBF kernel is visited by the robot;
i.e., ∂F̃ (x,θ)/∂θi 6= 0. If convergence of the correction
term is proven, stability of the full closed-loop system
needs to be considered to ensure stable interaction with the
environment. A sufficient condition to achieve stability is to
ensure passivity of the whole system [28], [29]. In [23], we
achieve passivity through the use of energy tanks [30]. The
formulation described in [23] still holds for this work.

III. EXPERIMENTAL EVALUATIONS

We evaluate our method in two real-world scenarios. In
the first scenario, a robot comes in contact with a non-
flat surface, moves on it while generating a desired contact
force profile. We assess the ability of the system to improve
the force tracking under different conditions and analyze the
effect of the choice of hyper-parameters (K and σ) on the
granularity and precision of the force modulation. We also
show the robustness of our method to real-time disturbances.
In the second scenario, we perform a collaborative task with a
human where the human asks the robot to clean the surface at
different locations. To achieve this, we combine the proposed
force adaptation with a mechanism to adapt the attractor
of a nominal limit cycle (proposed in our previous works
[22], [31]). We show that the force modulation can adapt
fast enough to cope with the change in dynamics.

A. Force adaptation on a non-flat surface

In this scenario, we use a 7-DOF robotic arm (KUKA LWR
IV+). The robot is equipped with joint torque sensors at the
actuators and can be torque-controlled. A 6-axis ATI force-
torque sensor is mounted on the end-effector on which a
3D printed finger tool is attached. The rigid non-flat surface
is fabricated by deforming a Plexiglas sheet using heat. It is
sticked on a wooden plate whose pose is tracked by a motion
capture system. Technical details are given in Appendix I.

The robot’s behavior is systematically evaluated in a
simple task: starting from a fixed initial position, the robot
comes in contact with the surface to perform a circular
motion (with a fixed center) on the surface while applying a
desired contact force. The experiment is repeated 18 times
under different choices for hyper-parameters, target force and
motion velocity. For each run, force adaptation starts after 9s
approximately, the experiment lasts 50s, εr = 20, while F̃max

is experimentally set to 10N . To learn F̃ (x,θ), we should
define K, σ, and the spatial distribution of the gaussians.
The latter mainly depends on the desired robot motion on
the surface. We distribute the gaussians uniformly on the
surface in a D×D 2d grid (D = 16cm) to cover the desired
circular motion of radius 5cm. K and σ need to be picked
in relationship to each other to reach accurate and smooth
interpolation. To enforce that the gaussians do not overlap



K
σ

0.5σth σth 2σth

9 1.45 (3.19) 0.89 (3.21) 1.55 (3.23)
100 0.58 (3.06) 0.36 (3.19) 0.79 (3.20)
900 0.49 (3.19) 0.69 (3.19) 1.25 (3.22)

(a)

FT

v0 0.2m/s 0.25m/s 0.3m/s

10N 0.29 (2.69) 0.32 (3.04) 0.37 (3.52)
15N 0.31 (2.82) 0.38 (3.27) 0.41 (3.46)
20N 0.30 (2.77) 0.38 (3.09) 0.48 (3.53)

(b)

TABLE I: Force adaptation on the non-flat surface: RMS values of the force error in N obtained over the last 10s of the experiments (in bold). The values
in parentheses are the RMS errors obtained in the last 5s before starting the adaptation. In Table Ia, different combinations of numbers of RBFs and kernel
width are tested while keeping the same target force after contact (FT = 15N ) and desired robot velocity (v0 = 0.25m/s). In Table Ib, the target velocity
and contact force are changed while keeping the same adaptation settings (K = 100, σ = σth).
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Fig. 2: Force adaptation on the non-flat surface when using different number of RBFs with σ = σth, FT = 15N , and v0 = 0.25m/s: (a) K = 9, (b) K =
100, (c) K = 900. On the left side, the measured, desired and corrected desired force profile are depicted. On the right side, the force compensation map
learned at the end of the experiments is drawn with respect to the robot’s relative position to the attractor, along with the robot path on the surface.
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Fig. 3: Force tracking error as a function of the number
of repetitions (e.g., circles) with σ = σth, FT = 15N .
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Fig. 4: Force adaptation on the non-flat surface under disturbances
with K = 100, σ = σth, FT = 15N , and v0 = 0.25m/s.

more than 1 standard deviation, we propose a kernel width

of σth =
D√
K

. Finally, the complexity and variability of the

unmodeled dynamics need to be considered in selecting K;
i.e., higher/lower number of gaussians results in higher/lower
approximation power, but higher/lower convergence time.

Table I evaluates the performance of our method by
comparing the force tracking error before and after adap-
tation in terms of Root Mean Square error (RMS). In Table
Ia, different combinations of K and σ are tested, while
keeping the same target force and desired robot velocity
in contact. Before adaptation, the RMS error reaches in
average 3.18 ± 0.06N . At the end of the experiments, the
lowest RMS value (0.36N ) is obtained by using K = 100
gaussians and setting σ to σth. We can observe that the RMS
error is usually higher when using a significantly smaller
or larger σ as expected. Indeed, approximation power of
larger kernels suffers from specificity, while small kernels

lack generalization/interpolation. Furthermore, with small
kernels, high adaptation rates are prone to fluctuations and
instabilities. These results also show that lower number
of gaussians (K = 9) provides less effective correction.
This is illustrated in the measured force profile in Fig. 2a
(left) which still has a significant error pattern that cannot
be captured by the model. This also translates visually in
Fig. 2a (right) where only three distinct regions are visible
in the learned force correction map. When increasing K to
100, the approximation of the model improves as shown
in Fig. 2b. Higher K is expected to result in lower RMS
error. However, it requires more time for convergence as
illustrated in the measured force profiles. This is why, higher
RMS errors are obtained for K = 900 than for K = 100,
as the model parameters are still converging at the end
of the experiment. The higher specificity of K = 900 is
visible in the force correction map (Fig. 2c (right)) where the



correction is only learned near the motion patterns. In Table
Ib, our method is evaluated when targeting different target
forces and velocities, while keeping the same adaptation
settings. The method shows robustness to desired motion
velocity and force where in average, the RMS error is
reduced to 0.36 ± 0.06N . The lower performance when
targeting simultaneously higher desired velocities and forces
is expected due to higher frictions. Also, comparing the
average results across the two tables (0.90 ± 0.42N in
Table Ia) shows that our method is less sensitive to the
desired behavior than the hyper-parameters. This delineates
the importance in choosing the hyper-parameters that can
be achieved following the proposed guideline. Moreover,
Fig. 3 highlights the influence of the number of repetitions
(i.e., circles) performed (after starting the adaptation) on
the convergence and tracking performance of our method.
As expected, for a fixed adaptation rate, higher K or robot
velocity need more repetitions to converge. In general, the
number of repetitions needed is mainly affected by the
adaptation rate, the number of RBFs and the robot velocity.

Finally in Fig. 4, an example of force adaptation under
disturbances is provided. Between 27 and 32s, a human
pushes the robot away from the attractor while the robot
is moving in contact. The algorithm compensates for the
generated force errors by adapting the correction limited by
a lower bound. However, once the disturbance disappears,
the force error is reduced quickly; i.e. less than 6s. At 42s,
the human changes the surface inclination, keeps it tilted,
and puts it back at 50s. The correction pattern is adapted
quickly (2 to 5s) to the inclination changes. Our adaptation
mechanism only considers the interaction with the surface
captured by the force-torque sensor. For instance, when the
human takes the robot away from the surface at 65s by
interacting with the body, the force error is compensated
instantaneously once the robot reaches the surface; i.e., the
previously adapted model remains unchanged.

B. Collaborative cleaning of a non-flat surface

In this second scenario, we perform a cooperative cleaning
task of the non-flat surface with a human. The same setup as
in section III-A is used with the exception of the robot tool,
replaced with a cleaning pad (see Fig. 1). Here, we highlight
the benefits of using dynamical systems to perform contact
tasks with a reactive and adaptive behaviour while interacting
both with the surface and a human. To this end, we combine:
• The work in [31] to switch across different tasks. For the

cleaning of the surface we define two tasks:
– The homing task (i = 1) defined by f1(x) = xa,h −x

and F 1
d (x) = 0 ∀x, where the robot should reach a fixed

attractor above the surface, with xa,h the attractor.
– The cleaning task (i = 2) defined by f2(x) and F 2

d (x)
as in section III-A (see Appendix I).

From these tasks, we express the adapted nominal DS as:
f(x) = b1f

1(x) + b2f
2(x) (17)

where b = [b1, b2]T is the belief vector whose update
rule ensures that b1 + b2 = 1 and that one bi → 1 in
finite time (see [31]). Concerning the overall desired force

profile Fd(x), we set it to:

Fd(x) =

{
F i
d(x) if bi = 1

0 otherwise (18)

• The work in [22] to adapt the cleaning motion by adjusting
the location of the attractor in f2(x).

• The method in section II-B to adapt the desired force.
Thus, three adaptation levels occur in this scenario: task,
motion, and force. Each of them is activated under simple
conditions. Task adaptation is active when the robot is in
free motion; i.e., no contact with the surface, or Fd(x) =
0. Motion adaptation is activated when the robot is cleaning
the surface (i.e., b2 = 1 and the robot is in contact), and
the tangential forces (w.r.t to the surface) perceived at the
end-effector exceed a predefined threshold εF,t. To this end,
we assume that the human grabs the robot tool to change
the cleaning area and that large forces would result from
this interaction. Finally, force adaptation is enabled when
the robot is cleaning the surface and the tangential forces
remain below εF,t.

To adapt the desired force profile, we distribute uniformly
the gaussians on a grid centered at the current attractor
similarly to section III-A; i.e., the gaussians are moving with
the adjustable attractor. This avoids using a high number
of gaussians to cover the whole surface which suffers from
higher computational cost. Because of the adjustable attrac-
tor, we reset the weights of the force adaptation when the
human is changing the cleaning area. Zero values often serve
as a better prior than the previous parameters learned from
another area. In line with section III-A, we use K = 100, D
= 16cm, σ = σth, εr = 20, and F̃max = 10N . More technical
details are provided in Appendix I.

In our collaborative scenario, the robot starts from its home
position (b1 = 1). Following the human physical interaction,
the robot switches to the cleaning task (b2 = 1) and comes
in contact with the surface to start cleaning it around a
predefined initial attractor. The beliefs’ profile illustrated
in Fig. 5a (bottom) shows the switching across the two
tasks. The activation of the force adaptation occurs after
reaching the contact at 8s; see Fig. 5a (top). The force error
quickly reduces to a negligible amount; i.e., RMS error of
0.43N between 20 and 25s. The robot cleans the same area
until approximately 25s when the human starts to physically
interact with the robot with the intention to change the
cleaning area. This is illustrated by the large peaks in the
measured force profile; see Fig. 5a (top). Fig. 5b illustrates
the adaptation of the motion (i.e., the attractor) which occurs
several times between 25 and 74s. During that period, force
adaptation is active when the tangential forces are small; i.e.,
the absence of human interaction. For example, one can see
the force correction map and adapted attractor captured at
72.5s in Fig. 5b. Finally, at around 74s, the human stops the
cleaning task through physical interaction resulting in the
robot retreating; i.e., b1 = 1.

IV. SUMMARY AND CONCLUSION

In this work, we used dynamical systems for force adap-
tation in contact tasks. Our method uses online adaptation
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Fig. 5: Collaborative cleaning of the non-flat surface: Force adaptation is illustrated in Fig. 5a top with the measured, desired, and corrected desired force
profile. At the bottom, task adaptation is represented by the beliefs’ evolution. Motion adaptation is visible in Fig. 5b with the whole robot path projected
on the surface’s plane during the cleaning task. The gray shared areas in Fig. 5a highlight the interaction periods with the human to adapt the motion.
Figure Fig. 5b also shows the attractor and force correction map captured at 72.5s (i.e., vertical dashed line in Fig. 5a).

of a state-dependent force correction model encoded with
gaussian RBF kernels. It is particularly suitable for repetitive
tasks as shown in section III-A where the robot should
repeat the same motion while generating a desired contact
force. For non-repetitive tasks which do not require to
learn a model (no structural errors), our method could be
simply modified to online adaptation of an offset. Our results
showed that the force tracking accuracy is significantly
improved for different desired motion-force profiles even
in the face of real-time disturbances. For the correction to
be effective, the hyper-parameters should be set properly;
in particular the number of gaussians and kernel width.
In our experiments, we distributed the RBFs locally on a
small area around the attractor instead of covering the whole
surface. The alternative requires a large number of gaussians
which increases the computational cost and convergence
time. The latter can be reduced using higher adaptation rate
which, however, is prone to fluctuations and instabilities.
Moreover, the surface used in the experiments remains fairly
smooth. With more complex surfaces, a uniform distribution
would not be able capture all the surface non-linearities,
and increasing globally the number of RBFs is not a proper
solution regarding computational cost. One could consider
Gaussian Process Regression (GPR) [32] as an alternative
to our method which is similar but more generic. Indeed,
GPR can model complex non-linear functions and has been
applied to learning surfaces [33]. Furthermore, our model
only depends on the robot’s end-effector position. Such
models perform satisfactorily as long as the robot re-visits the
same position with similar velocities. Mathematically speak-
ing, non-stationary behaviors with relatively lower dynamics
than the adaptation can be compensated. To improve the
performance further, one can include other variables such
as velocity in the model. However, one has to deal with the
curse of dimensionality or find efficient ways to distribute the
RBFs in the input space. Overall, our experimental results
suggest that many robotic applications can benefit from force
adaptation with dynamical systems. As demonstrated in the
collaborative cleaning task in section III-B, the time-invariant

DS framework provides reactive and adaptive robotic be-
haviour. This enables robots to perform tasks in uncertain
environment where the robot is required to physically interact
with humans, objects, and surfaces.

APPENDIX I
TECHNICAL DETAILS

The profile of the non-linear surface is learned with Support
Vector Regression (C-SVR) using a gaussian kernel (C =
100, ε = 0.01, σ = 0.20) to estimate the normal distance
Γ(x) and vector n(x) to the surface at any position in space.
These information are learned with respect to a local frame
attached to the wooden plate which is tracked by the motion
capture system. In both experimental scenarios, the control
strategy runs at a frequency of 200Hz (e.g., ∆t = 0.005s)
and the DS-impedance gain d1 is set to 150.

The circular nominal DS f(x) is defined as f(x) =
R(x)n(x)v0 where v0 > 0 is the target velocity. R(x) is
a rotation matrix designed to progressively align n(x) with
circular motion dynamics tangent to the surface, as the robot
gets closer to contact. The circular motion has a radius of
5cm in both scenarios and a fixed attractor in the first one.
The desired force profile Fd(x) is defined by:

Fd(x) =

 FT µF,n ≥ εF,n ∧ Γ(x) ≤ εΓ

FT,min µF,n < εF,n ∧ Γ(x) ≤ εΓ

0 otherwise
(19)

where µF,n is the mean value of the measured normal force
over a sliding window of n samples (set to 10) while εF,n ≥
0 is a force threshold (set to 3N ). εΓ ≥ 0 is the threshold (set
to 5cm) on the normal distance to the surface Γ(x). FT,min

is the target force close to contact (set to 3N ). It ensures that
contact with the surface happens and contributes to reduce
the impact at contact. FT is the target force in contact.

For the collaborative task, the contact condition is defined
by µF,n ≥ εF,n ∧ Γ(x) ≤ εΓ while εF,t is set to 15 N .
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