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Abstract

Understanding and quantifying inter-joint coordination is valuable in several domains such

as neurorehabilitation, robot-assisted therapy, robotic prosthetic arms, and control of super-

numerary arms. Inter-joint coordination is often understood as a consistent spatiotemporal

relation among kinematically redundant joints performing functional and goal-oriented

movements. However, most approaches in the literature to investigate inter-joint coordina-

tion are limited to analysis of the end-point trajectory or correlation analysis of the joint rota-

tions without considering the underlying task; e.g., creating a desirable hand movement

toward a goal as in reaching motions. This work goes beyond this limitation by taking a

model-based approach to quantifying inter-joint coordination. More specifically, we use the

weighted pseudo-inverse of the Jacobian matrix and its associated null-space to explain the

human kinematics in reaching tasks. We propose a novel algorithm to estimate such Inverse

Kinematics weights from observed kinematic data. These estimated weights serve as a

quantification for spatial inter-joint coordination; i.e., how costly a redundant joint is in its

contribution to creating an end-effector velocity. We apply our estimation algorithm to data-

sets obtained from two different experiments. In the first experiment, the estimated Inverse

Kinematics weights pinpoint how individuals change their Inverse Kinematics strategy when

exposed to the viscous field wearing an exoskeleton. The second experiment shows how

the resulting Inverse Kinematics weights can quantify a robotic prosthetic arm’s contribution

(or the level of assistance).

1 Introduction

“How can we measure the quality of human movement?” Many researchers from several disci-

plines, especially human movement scientists, aim to answer this daunting question. One par-

ticular instance of this question concerns the redundancy of human degrees of freedom (DoF).

For example, any hand movement can be generated using countless configurations of
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proximal joint rotations. Despite such an abundance of possible solutions, it is well known

that individuals exhibit a consistent kinematic behavior; e.g., consistent use of all 7 DoF of the

shoulder-elbow-wrist kinematic chain to reach and grasp an object in space [1]. Therefore, as

initially put forward by Bernstein [2] the goal is to understand how joints coordinate and con-

tribute to creating the desired hand movement. Numerous experimental approaches have

sought to understand the choice of inter-joint configuration as a function of movement direc-

tion [3] velocity [4], comfort [5], fatigue [6], or task dynamics [7]. Recent theoretical

approaches to human motor control have further investigated this question providing several

hypotheses for the underlying control mechanism [8–11]. For instance, one prevalent hypoth-

esis is the view that degrees of freedom are combined into synergies with automatic compensa-

tion between them [12]; i.e., neuromuscular synergy leading to “kinematic synergy” most

often quantified through correlation analysis.

Despite the growing number of studies on human kinematics, there is no straightforward

method of analysis to explain how kinematic redundancy is resolved. In other words, “how can
we quantify the inter-joint coordination toward a task in kinematically redundant systems?”.

Beyond fundamental investigations on human motor control, a pertinent metric is much

needed in the clinics, particularly in the context of neurorehabilitation and assistive technol-

ogy. Most metrics for measuring the quality of motion are limited to the end-point (or the

“end-effector” as in the robotic nomenclature) and how well the task is performed. For exam-

ple, in studies on post-stroke recovery, such measurement scales may identify improvements

in task execution. However, no clear explanation can be provided on how the different seg-

ments (especially the dysfunctional ones) contribute to that performance. It is well known

that, due to the kinematic redundancy, humans can use proximal joints to compensate for the

lack of functionality of the distal ones [13, 14]. Thus, in those studies, whether the improve-

ment is due to the actual recovery of distal joints or the compensatory role of proximal joints is

ambiguous. Therefore, as argued by [15, 16], it is crucial to distinguish between kinematic

compensation and restitution. However, no analysis method in the literature can explicitly

address this issue [17–19]. Most metrics for inter-joint coordination are limited to correlation

analysis in the joint-space without considering the task-space; for example, principal compo-

nent analysis [20]. In a recent work [21], Latash argues against such views on inter-joint coor-

dination and synergy as synchronous joint rotations. To quote his words: “we have to do better
than measuring variables and performing correlation analysis.”

This work is an effort to provide an effective analysis tool to study inter-joint coordination.

To go beyond the limitations of model-free approaches (e.g., those based solely on correlation),

we consider a model-based approach that accounts for the end-point movement as the goal of

the kinematic chain. To this end, our approach is to exploit the Inverse Kinematics (IK) formu-

lation from the robotic literature. More specifically, we use the weighted pseudo-inverse of the

Jacobian matrix, where we identify the weight matrix from the observed kinematic data. These

estimated weights serve as a quantification for the inter-joint coordination as they explain how

much each joint participates in creating the end-effector velocity. This approach enables us to

distinguish and quantify compensatory behavior in kinematic data when a baseline behavior is

available. The body of research on IK formulation to study human kinematics has largely been

overlooked using the weight matrix. This is not surprising since the estimation of these weights

is not straightforward due to the nonlinear nature of the problem. In this work, we propose an

algorithm to estimate such weights from the kinematics data. Furthermore, we show that such

weights can be used to investigate the inter-joint coordination in rehabilitation scenarios as

well as in prosthetic robotic arms applications.
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2 Background

This section provides an overview of the related works from different areas of the literature.

Subsection 2.1 reviews the weighted IK formulation in the robotic literature where it origi-

nated. The applications of this formulation and their related literature are categorized into two

parts: analysis and control. In Subsection 2.2 reviews different analytical approaches for assess-

ing movement quality, especially those which employ the IK formulation. Subsection 2.3 pro-

vides a review of possible applications where weighted IK is used for control purposes.

Furthermore, Subsection 2.4 reviews possible applications which would benefit from a metric

for inter-joint coordination; namely rehabilitation (e.g., for post-stroke patients), restoration

(e.g., prosthetic robotic arms for individuals with amputation), and augmentation (e.g., super-

numerary arms with the aim to assist a human-user). Finally, Subsection 2.5 provides mathe-

matical background and formulates the problem of identifying the IK weights.

2.1 Weighted Inverse Kinematics formulation

In order to control a robotic manipulator, one needs to deal with Forward and Inverse Kine-
matics. Forward kinematics refers to the problem of determining the end-effector position

when the joint values are known. This is often a simple operation when the geometrical prop-

erties of the chain are known. Inverse kinematics, however, aims at finding the joint values

based on a given end-effector position. This problem becomes more challenging in redundant

systems; i.e., having more degrees of freedom than the dimension of the task. In this case, one

has to choose one particular IK solution among infinite possibilities. The solution to the IK

problem can be categorized into two groups: closed-form and numerical solutions [22].

Closed-form solutions rely on geometrical properties of the kinematic chain or solve the IK

problem in an algebraic form. However, numerical solutions are robot-independent but rely

on different heuristics or iterative techniques. Furthermore, the IK problem can be addressed

at the velocity level; i.e., finding the joint velocities based on a given end-effector velocity. In

this case, it is helpful to differentiate the forward kinematics to obtain the Jacobian matrix,

which maps joint velocities to the end-effector velocities at a given joint configuration. Thus,

the pseudo-inverse of the Jacobian matrix can be used to solve the IK problem as initially for-

mulated in [23]. A tremendous amount of research has been dedicated to overcoming this

approach’s main limitation: dealing with singular configurations leading to a non-invertible

Jacobian matrix or near-singular configurations resulting in large velocities. Several

approaches to mitigate this problem can be found in the literature: cyclic coordinate descent

[24], Levenberg-Marquardt damped least square [25], quasi-Newton and conjugate gradient

[26], neural networks and artificial intelligence [27–29], Fuzzy inference [30], Genetic algo-

rithms [31], Adaptive control using Jacobian transpose [32, 33], singular value decomposition

[34–36], Damped Least squared [25, 37, 38], Quadratic programming [39]. Furthermore,

using weighted pseudo-inverse for redundancy resolution is a common practice for robotic

applications. Using weights (to pick a specific solution that minimizes a cost) was initially sug-

gested in 1969 [40] and later implemented to control robotic manipulators [41, 42]. Most

often, the manipulator inertia matrix is used as the weight matrix to minimize the total kinetic

energy expenditure of the robot [43–45]. Nevertheless, in many robotic applications, the

weight matrix choice might not directly affect the task performance [46]. In the same line, it is

rare to see such approaches employed to analyze human movement. For instance, in [47] IK

weights were used for modeling the kinematic data, which are manually set. In summary, the

weighted IK formulation is less appreciated in the literature since there is no systematic

method to choose a set of appropriate weights. Thus, researchers implicitly pick the identity
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matrix, retreating to the right pseudo-inverse, which is satisfactory for control purposes (as in

[48]) but not sufficient for analysis.

2.2 The use of Inverse Kinematics in human movement analysis

Numerous metrics for movement quality have been proposed in the literature to analyze

human motion; see [49] for a review. In the current state of the art, the kinematic measure-

ments are often limited to the mean and standard deviation of joint motions and correlations

analysis across joints; e.g., shoulder-elbow correlation. In [50], such kinematic measurements

were used to study inter-joint coordination in post-stroke patients and compared to the clini-

cal evaluation of the impairment by FMA-UE (Fugl-Meyer Assessment for Upper Extremity

[51]). Studies using robotic-assisted protocols show that stroke patients exhibit abnormal

intralimb joint coupling, which is correlated with FMA-UE [52–55]. Despite such a consensus,

these clinical measures cannot capture small changes nor distinguish behavioral restitution

from compensation. Other methods to study inter-joint coordination have been tried in the

literature. For instance in [56, 57], inter-joint coordination is considered as the temporal rela-

tionship between the joint values. Similarly, in [58, 59], “continuous relative phase” has been

used to study the effect of fatigue on inter-joint coordination. Such studies show that while

these metrics are beneficial for assessment, they depend highly on the movement tasks. This is

due to the fact that inter-joint coordination is often understood as correlation across joints

without correcting for the fact that they are working toward a goal. Model-based approaches

can help overcome these issues in investigating and quantifying inter-joint coordination.

The pseudo-inverse of the Jacobian matrix, as a model-based approach, is extensively used

in the literature to analyze human kinematic data, mainly from a “motor-control” point of

view. For instance, the well-known “Uncontrolled manifold” (UCM) method uses the Jacobian

pseudo-inverse (more precisely, the null-space projector) to decompose the joint velocities into

task-space and null-space [60, 61]. Null-space velocities (also referred to as “self-motion” [62])

are those which do not create an end-effector motion. By comparing the variations in the two

spaces, the UCM method computes how strong the null-space is controlled (compared to the

task-space). Thus, UCM views inter-joint coordination as how strong the joints contribute to

the control of the null-space. Nevertheless, the same model-based approach using the pseudo-

inverse of the Jacobian matrix can be used to quantify other facets of the inter-joint coordina-

tion; i.e., how much each joint contributes to creating an end-effector velocity. However, using

an “a priori” assumed pseudo-inverse (right pseudo-inverse in this case) among infinite possi-

bilities (i.e., weighted pseudo-inverse [63]) is an ill-posed approach to model kinematic data.

Regardless of the choice for the pseudo-inverse, the modeling error (i.e., the part that cannot be

explained by the pseudo-inverse) is attributed to the null-space. In summary, it can be seen that

the problem of understanding the inter-joint coordination is the problem of finding the appro-

priate pseudo-inverse; i.e., finding IK weights that fit the data and rely less on the null-space.

2.3 The applications of weighted Inverse Kinematics in assistive robotics

Robotic-assisted rehabilitation has proven to be as effective as conventional training for upper

and lower limb motor movement [64–68]. Moreover, robotic interventions provide two pri-

mary advantages. First, these devices (compared to traditional methods) allow for reliable mea-

surements. Such measurements can be used to better analyze and track patient performance

throughout the therapy. One challenge in this approach is determining the anatomical joint

values based on the robotic ones. Many methods try to solve this problem by exploiting the IK

formulation (e.g., [69]), which lies outside the scope of this work. The second advantage of

such robotic systems is their capacity to influence patients’ kinematic behavior. This influence
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can be active where the robot assists the motion or passive where the robot acts as a damper

and imposes a viscous field; i.e., active or passive from the robotic point of view. For instance,

in a previous work [70], we used an upper-limb exoskeleton to modify the joint coordination

by applying a force field in asymptomatic participants. Similarly, methods such as Constraint

Induced Movement Therapy (CIMT) have been proposed where functional joints are

restricted in order to encourage and rehabilitate the dysfunctional ones. Other works such as

[70, 71] aim to alter the subject’s synergistic behavior using wearable robots. Even though

rehabilitation robotics allows for various therapeutical approaches, the analysis of patients’

movements in terms of inter-joint coordination is limited. The use of pseudo-inverse methods

in rehabilitation robotics is often criticized for 1) providing multiple solutions, 2) generating

unnatural postures, and 3) lack of solution when the Jacobian matrix is singular. Therefore,

there is an inclination toward closed-form solutions for rehabilitative applications [72]; for

example, see [73–80]. While these analytical models provide reliable IK solutions for rehabili-

tation purposes, they cannot be used to measure the quality of the motion or to explain human

kinematic data and its variability; e.g., individual differences or the evolution of the subject’s

performance in the course of the therapy. This begs for modeling approaches to kinematics

data where there are free and interpretable parameters such as the weights in weighted

pseudo-inverse of the Jacobian matrix.

2.4 From inter-joint to human-robot coordination

Besides robotic-assisted rehabilitation, the weighted pseudo-inverse approach is of particular

interest for assistive robotics; especially with the emerging cobots, robotic prosthetics, and

robotic supernumerary arms. The resulting knowledge about human inter-joint coordination

helps roboticists to design better robotic systems; e.g., humanoid robots, which move, interact

and assist in a human-like manner. More specifically, the new generation of assistive robots

requires systematic and efficient tools for analyzing and designing human-robot coordination.

This is a necessary step toward ergonomic and efficient execution of daily tasks such as reach-

ing motion across all domains: rehabilitation (e.g., in stroke patients), restoration (e.g., pros-

thetic for individuals with amputation), and augmentation (e.g., supernumerary arms to

enhance industrial operators). In our previous works [81, 82], we used the concept of compen-

satory behavior to propose a new control paradigm for prosthetic arms; i.e., “Compensation

Cancellation Control” as a movement-based strategy in contrast with EMG-based methods.

Furthermore, in a recent work [83], we proposed a prosthetic control strategy specifically

using the weighted pseudo-inverse of the Jacobian matrix. In such scenarios, a metric for

inter-joint coordination can help the designer to assess the performance of a robotic assistive

device. In other words, one could quantify how much the robotic joint contributes to the final

end-effector movement. This view can be extended to any leader-follower robotic system with

kinematic redundancies when the objective is to achieve higher assistive performance; i.e.,

higher follower’s contribution. Supernumerary robotic arms are also examples of such systems

[84–86] where the human users use their proximal joints to compensate for the lack of robot’s

activity. In all these examples, we are facing a similar question: ““how do we know if the robot/

follower contributes enough to the task and not the user/leader compensating for the lack of

robotic activity?”. In this work, we show that the weighted IK formulation can quantitatively

answer such questions about human-robot coordination.

2.5 Mathematical background and problem formulation

Let us consider the observation of joint velocities ( _q 2 Rn where n is the number of degrees of

freedom) and end-effector velocities ( _x 2 Rm
where m is task/end-effector space dimension).
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Due to the geometry of the kinematic chain, joint velocities are mapped onto the end-effector

velocities as:

_x ¼ JðqÞ _q ð1Þ

which is known as Forward Kinematics with JðqÞ 2 Rm�n
as the Jacobian matrix. Let us note

that the Jacobian matrix depends on the joint configuration (q 2 Rn). However, the mapping

from end-effector to joint velocities (i.e., IK) can be modeled as follows.

_q ¼ J# _x þ _qn ð2Þ

where JJ# J = J and J _qn ¼ 0. It is trivial to show that the resulting _q from any pair of J# and _qn

who satisfies these two conditions satisfies the forward kinematics in Eq 1. In this IK formula-

tion, J# 2 Rn�m is the generalized inverse of J (also called Moore–Penrose inverse). Further-

more, _qn represents the null-space velocities since it does not affect the end-effector velocities.

Given a particular J#, the corresponding null-space velocity can be computed as:

_qn ¼ N _q ð3Þ

where N = I−J# J is the null-space projector of J#. A practical and general choice for the J# is the

weighted pseudo-inverse [63]:

J# ¼W � 1JTðJW � 1JTÞ� 1 ð4Þ

where W 2 Rn�n is a positive definite matrix. This can be seen as the solution to the following

problem:

min
_q

_qTW _q

s:t: J _q ¼ _x
ð5Þ

A diagonal W suffices in most applications as it already provides enough flexibility for design

and analysis purposes. Moreover, multiplying W by a scalar does not affect Eq 4. Therefore, W
can always be normalized by its largest element, leading to the following choice for this matrix:

W ¼

w1 0 � � � 0

0 w2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � wn

2

6
6
6
6
6
4

3

7
7
7
7
7
5

where wi 2 ½0; 1� for i ¼ 1:::n ð6Þ

Therefore, our goal is to estimate such weights (w1. . .wn) from the observed kinematic data

( _q, _x, and J). However, it is essential to note that any choice of W can model the observed data.

In other words, each choice of W brings us to a specific decomposition of observed joint veloc-

ities as follows

_q ¼ _qtask þ _qnull ð7Þ
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where _qtask ¼ J# _x and _qnull ¼ _q � _qtask which can be written as follows as well.

_qnull ¼ _q � _qtask ð8Þ

¼ _q � J# _x ð9Þ

¼ _q � J# J _q ð10Þ

¼ ðI � J# JÞ _q ð11Þ

¼ N _q ð12Þ

To illustrate the result of decomposition under different assumptions of W, we consider the

following simple example of a redundant robot made of two serial prismatic joints with a one-

dimensional task; i.e., n = 2 and m = 1. Let us consider an observed _q ¼ ½0; 1�T with J = [1, 1]

which leads to _x ¼ 1. Using W = I to consider similar cost/contribution for each joint, we have

J# = [.5,.5]T, which leads to the following decomposition between task-space and null-space:

_xtask ¼
:5

:5

" #

and _xnull ¼
� :5

:5

" #

ð13Þ

While using W = diag([1, 1/9]), we have J# = [.1,.9]T with the following decomposition:

_xtask ¼
:1

:9

" #

and _xnull ¼
� :1

:1

" #

ð14Þ

The difference between the two cases reflects the underlying assumption about the IK strategy.

In the first case, we assume that the two joints (being redundant) will contribute equally to the

task (i.e., 0.5 each). However, the fact that the first joint has zero velocity is explained by the

null-space; i.e., −.5 for the first joint and 0.5 for the second joint. In the second case, we assume

a higher gain/cost for the first joint, which explains the observed velocity as mostly task-related

( _qtask ’ _q) with comparatively less utilization of the null-space.

This simple example reflects our philosophy in modeling the joint velocities observed in a

redundant system: The observed joint velocities _q need to be mostly explained by _qtask

where we correct for the imbalances of the contributions of joints by using a proper weight

matrix. As seen above, uniform joint contribution puts a strong assumption on IK strategy,

which is not in line with the fact that joints in kinematically redundant systems have different

roles, functionality, costs, and contribution. Therefore, by not correcting for such imbalances,

we risk having a decomposition that is not descriptive of the actual underlying strategy for

redundancy management. To summarize, it is important to make a distinction between the

two following questions:

• How is the redundancy/abundancy utilized? (modeling the IK strategy)

• How is the geometrical null-space utilized? (velocity decomposition into task-space and

null-space)

In our view, it is essential to begin by answering the first question by precisely modeling the

kinematic data; e.g., in our case, estimating the IK weights. Only after answering the first ques-

tion (i.e., finding the proper null-space projector) can it be examined how the null-space is

utilized.
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This work explains the observed kinematic behavior by estimating a proper set of IK

weights. These weights can be interpreted as the relative cost of the joints as described in Eq 5;

i.e., joints with lower/higher weights are less/more costly to move. These weights, therefore,

explain inter-joint coordination in terms of joints’ contributions to creating the end-effector

velocity.

3 Materials and methods

This section proposes an algorithm for estimating IK weights (Subsection 3.1) and our

approach for numerical and experimental validation validation (Subsection 3.2).

3.1 Proposed algorithm for estimating Inverse Kinematics weights

Let us begin with a single observation at time-step k with _qk 2 R
n

as the joint velocities, _xk 2

Rm
as the end-effector velocities, and Jk 2 R

m�n
as the Jacobian matrix. We assume that this

observation is generated by the following IK model:

_qk ¼ J#k _xk þ vk ð15Þ

where J#k ¼W � 1JTk ðJkW
� 1JTk Þ

� 1
is the weighted pseudo-inverse of the Jacobian (Jk) with the

diagonal weight matrix W 2 Rn�n
. In this model, vk denotes the null-space velocities which

do not affect the task space; i.e., Jk vk = 0. However, our estimation process is formulated as

follows.

_�qk ¼ �J #k _xk þ �vk

�J #k ¼ �W � 1JTk ðJk �W � 1JTk Þ
� 1

�vk ¼ gðI � �J #k JkÞ _qk

ek ¼ _qk � _�qk

8
>>>><

>>>>:

ð16Þ

where �W , �J # , _�q, and �v represent the estimations for their respective variables. To estimate the

null-space velocities �vk, we use the current estimation of the null-space projector; i.e.,

ðI � �J #k JÞ. However, we use 0� γ� 1 as the “null-space projection ratio” to consider a portion

of the projected velocities. The effect of γ becomes clear when inspecting the modeling error ek
which can be rewritten using Eq 16 and _xk ¼ Jk _qk as:

ek ¼ ð1 � gÞðI � J# JÞ _qk ð17Þ

which shows that there is no modeling error when entirely relying on the null-space projector;

i.e., ek = 0 for γ = 1. In other words, any weight matrix can perfectly model the data; for exam-

ple, �W ¼ I. This issue is further explained in the S1 File However, with smaller ratios, the

error depends on the choice of �W . This allows us to determine a weight matrix that explains

the underlying IK strategy rather than exploiting the null-space as a means for modeling error

minimization. On the other hand, a small γ might lead to an undesirable estimation as it seeks

to explain the null-space velocities using only the task-space part of the model.

Algorithm 1: Identification of W from observed data for n joints, m task dimensions, and

K samples.

input: _Q 2 Rn�K, _X 2 Rm�K, and fJ1; J2; . . .; JKg 2 R
m�n�K

parameter: γ
output: ~w

1 Initialize ~w ¼ 1n�1 and �V ¼ On�K;
2 while e > � do
3 �W  diagð~wÞ;
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4 e = 0;
5 for k  1,. . ., K do
6 �J #k ¼ �W � 1JTk ðJk �W � 1JTk Þ

� 1;
7 _�qk ¼

�J #k _xk þ �vk;
8 e eþ jj _qk � _�qkjj;
9 �uk ¼ JTk ðJ �W � 1JTk Þ

� 1
_xk;

10 �vk ¼ g ðI � �J #k JkÞ _qk;
11 end
12 e  e/K;
13 �U ¼ ½�u1; �u2; :::; �uK�;
14 �C ¼ ð _Q � �VÞ _QT;
15 �O ¼ �U _QT;

16 Rearrange �C 2 Rn�n into ~C 2 Rn2�n;

17 Rearrange �O 2 Rn�n into ~O 2 Rn2�1;
18 H ¼ ~CT ~C;
19 F ¼ � ~OT ~C;
20 ~w  Solve the SQP problem with H and F as in Eq 24;
21 ~w  ~w=maxð~wÞ;
22 end

Algorithm 1 provides a heuristic to compute IK weights from such observed data. We

assume that there are collected samples from a kinematic chain at each time-step k = 1,. . ., K
which serve as the input to our algorithm; namely, the joint positions

_Q ¼ ½ _q1; _q2; :::; _qK � 2 R
n�K

, end-effector velocities _X ¼ ½ _x1; _x2; :::; _xK � 2 R
m�K

, and Jk 2 R
m�n

as the Jacobian matrix at time-step k = 1. . .K. We initialize with �W ¼ I and zero null-space

velocities �V ¼ 0 where �V ¼ ½�v1; �v2; :::; �vk� 2 R
n�K

. In this algorithm, lines 1–9 correspond to

Eq 16 where we also introduce an auxiliary variable �uk since we can write (from Eq 16):

�Wð _�qk � �vkÞ ¼ JTk ðJk �W � 1JTk Þ
� 1

_xk ð18Þ

where we define �uk ¼ JTk ðJk �W � 1JTk Þ
� 1

_xk for kth time-step and in the matrix form as

�U ¼ ½�u1; �u2; :::; �uK � 2 R
n�K

. Therefore, we can write Eq 18 in the matrix form as:

�Wð _Q � �V Þ ¼ �U ð19Þ

where we have the unknown variables as the linear coefficients, even though U implicitly

depends on W in a nonlinear fashion. Furthermore, we can multiply both sides with _QT and

reach

�W �C ¼ �O ð20Þ

where �C ¼ ð _Q � �V Þ _QT 2 Rn�n and �O ¼ �U _QT 2 Rn�n. In this formulation, both �C and �O

depend on our current estimation ( �W). However, we can use our current estimation of �C and

�O and update our estimation for �W in a quasi-static manner as:

�Wtþ1
�C ¼ �O ð21Þ

where �Wt denotes our estimation at tth iteration. Since �W is a diagonal matrix, we can arrange

�C and �O regarding their columns as follows:

~C ~wtþ1 ¼
~O ð22Þ

where ~C ¼ ½diagð �C1Þ; diagð �C2Þ; :::; diagð �CnÞ�
T
2 Rn2�n where �C j is the jth column of �C.
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similarly, ~O ¼ ½~OT
1
; ~OT

2
; :::; ~OT

n �
T
2 Rn2�1

, and ~w 2 Rn�1
. In the S1 File, we show that Eq 22 is

equivalent to quasi-newton methods.

At this stage, one might consider using least-square methods to solve for ~wtþ1, but there is

no guarantee that the resulting values are positive. For this reason, we use Quadratic Program-

ming in order to satisfy such constraints. To do this, we consider the following quadratic cost:

C ¼
1

2
ð ~C ~wtþ1 �

~O iÞ
T
ð ~C ~wtþ1 �

~OÞ ð23Þ

which can be simplified into:

C ¼
1

2
~wT

tþ1
H~wtþ1 þ FT ~wtþ1

ð24Þ

where H ¼ ~CT ~C and F ¼ � ~OT ~C. We solve the QP with lower and upper bound constraints

for the solution; i.e., to have each weight between zero and one. Finally, we normalize the

weights in order to have the biggest weight at 1.

Our algorithm has two parts: evaluation (lines 2–11) and update (lines 12–20). While possi-

ble to swap the two parts, having the evaluation first allows us to have the performance of our

initial guess for W. Since, in this work we start with W = I, we have the comparison of our

result with the conventional W = I used in the literature. Finally, we stop the algorithm when

the average norm-2 error is smaller than a designated threshold (line 2).

3.2 Experimental and numerical validation

To validate our proposed algorithm, first, we consider two low-dimensional simulations. The

main purpose of these simulations is to illustrate the overall behavior of the proposed algo-

rithm in terms of convergence to the nominal IK weights. The further details and the results of

these simulations are reported in Subsection 4.1.

For the experimental validation, we consider kinematic data recorded in two different sce-

narios in the context of robotic-assisted rehabilitation and upper-limb prosthetic robotics,

respectively. These studies were approved by the ethics committee of the Paris Descartes Uni-

versity (CERES—IRB number 20162000001072) and the Sorbonne University (SU CER-2021–

111), respectively. All participants gave written and informed consent before participation.

Further details and the results of these investigations are presented in Subsections 4.2 and 4.3.

4 Results

This section begins with two low-dimensional examples which illustrate the performance of

the proposed algorithm in terms of convergence under different choices of parameters. Then,

we report the results of two experimental use case scenarios for the proposed method, in

which we identify the IK weights from the collected kinematic data. In both cases, we deal with

human participants performing reaching motions with their upper extremities. In the first

experiment, we use a robotic upper-limb exoskeleton applying a viscous force field to induce

different kinematic behaviors. In the second experiment, we use a virtual prosthetic elbow

with different control strategies. In terms of redundancies, this first case studies a 4 DoF kine-

matic chain for a 3d task, while the second experiment deals with a 3 DoF chain for a 2d task.

4.1 Illustrative examples

In the first example, we provide a numerical evaluation in which all inputs to our algorithm

are randomly generated (i.e., independent and identically distributed) using normal
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distributions. This means that all elements in _Q and Jk are sampled from N ð0; 1Þ while V is

sampled from N ð0; sÞ which allows us to study the effect of null-space velocity later. We con-

sider n = 5 and m = 3 with K = 500 data points with w� = [1, 0.8, 0.6, 0.4, 0.2]T. For QP-solver,

we set optimality, constraints, and step tolerances to 1e−3. We use γ = 0.6 and σ = 0.2. The

results are illustrated in Fig 1 where the parameters converge to their respective optimal values.

The final error is due to the null-space velocities. We show in the S1 File that a higher level of

randomness in the null-space (σ) leads to a higher final error.

Fig 2 studies the effect of γ on the convergence behavior. These results suggest that γ should

be kept as low as possible. However, we should note that in this simulation, the null-space

velocities vk and _qk are uncorrelated (as they are generated in an iid manner). In the next simu-

lation, we see that γ acts differently in practical and realistic scenarios since null-space and

joint velocities are correlated. Nevertheless, this simulation confirms that γ = 1 does not lead

to any weight update as analytically investigated earlier.

In a second simulation, we consider a redundant kinematic chain with two joints and a

one-dimensional task; i.e., n = 2 and m = 1. For the nominal IK solution, we consider w1 = 1

and w2 = 0.01 where we expect the task will be achieved by the second joint. Furthermore, for

the null-space behavior, we consider vk = [−0.1, qk1, 0]T where we expect the first joint to be at

zero. We simulate this system for 6s with dt = 0.1 starting from the initial position of q1 = [0.5,

Fig 1. The convergence behavior of our proposed algorithm for randomly synthesized kinematic data. All five

parameters converge to their respective optimal value. To obtain the standard deviation, we repeated the process 100

times. The average norm of the final error is 0.07.

https://doi.org/10.1371/journal.pone.0278228.g001

Fig 2. Visualization of the convergence behavior for different values of γ obtained from the random data. Since

the null-space and task-space velocities are decorrelated, γ = 0 provides the fastest convergence.

https://doi.org/10.1371/journal.pone.0278228.g002
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0.5]T. This provides us with K = 60 data points. For the desired end-effector position, we use xg
= 1, then at t = 2 we switch to 1.5 and at t = 3 to 0.5. The results of our algorithm are illustrated

in Fig 3. In this case, having γ> 0.5 is necessary for satisfactory convergence of the parameters.

It is also interesting to see that, when the null-space velocities are not considered (γ = 0), the

algorithm mistakenly converges to w1 = 0 and w2 = 1; i.e., describing that the task is accom-

plished mainly by the first joint, and the resulting discrepancy (between observed and expected

joint velocities) is due to the null-space velocities. On the other hand, choosing higher values

for γ leads to convergence to the optimal weights but at a lower convergence speed. In this

manner, γ = 1 can be seen as a particular case where the convergence time is infinite. One way

to deal with this trade-off is to use a time-varying ratio. For example, in this simulation, we

tested γ0 = 0.6 with γt+ 1 = γt+ 0.6(1−γt) in order to benefit from the fast convergence of γ = 6

at the beginning, and the optimality of a high γ toward the end. Generally, there is no proce-

dure for choosing an optimal γ since the results depend on the dataset, as we see from the two

last simulations. A helpful rule of thumb is to start with γ = 0.9; i.e., sacrificing convergence

speed for optimality.

4.2 Experiment 1—Inter-joint coordination in a viscous field

We collected kinematic data from 17 asymptomatic participants (11 males and 6 females),

reaching three different targets. Each target was reached in 20 trials (some trials had to be

removed due to recording issues) under two conditions: “Natural” and “Viscous”. As shown in

Fig 4, the participants were wearing a shoulder-elbow exoskeleton; i.e., 4-DOF ABLE upper-

limb exoskeleton [87]. This device allows us to impose a viscous force field (as presented in

our previous work [70]) to modify the subjects’ inter-joint coordination. The ABLE exoskele-

ton offers quasi-static gravity and friction compensation with highly reversible mechanical

transmission. However, due to a lack of dynamic compensation, the device exhibits a certain

level of undesired resistance which is characterized in our previous work [88]. Nevertheless,

this factor remains a constant effect across the two conditions since the participants wore the

exoskeleton during both conditions. Furthermore, the Wrist movements were blocked using a

prefabricated orthosis. In this manner, the analysis is limited to a 4 DoF kinematic chain

(matching the exoskeleton’s DOF where we can apply an arbitrary force field) performing a 3

DoF task, leaving a redundant DoF.

Participants performed pointing movements towards three targets (1: high, 2: forward, 3:

inward) with adjusted distance and height for each participant. The final orientation was not

Fig 3. Visualization of the convergence behavior for different values of γ obtained from the two joints case.

https://doi.org/10.1371/journal.pone.0278228.g003
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specified nor constrained, leading to a 3-dimensional task. The joint rotations were expressed

according to the ABLE kinematics:

• q1: shoulder elevation around an anteroposterior axis.

• q2: shoulder axial rotation.

• q3: shoulder flexion in the plane defined by the two previous angles

• q4: elbow rotation.

Positive values indicate elevation, internal rotation, shoulder flexion, and elbow flexion.

Finally, the mechanical joint limits of the exoskeleton were never reached by the participants

during the reaching movement.

Fig 5 shows the joint velocities of one of the participants reaching for the different targets.

Here, we present the average velocities over trials, with the standard deviation as the shaded

areas. Some observations can already be done at this stage. In the “Natural” Condition (i.e.,

transparent robot), the task is achieved mainly by utilizing the third and fourth joints (shoul-

der and elbow flexions), except for the third target, which requires the contribution of all

joints. The main visible difference between “Natural” and “Viscous” is the higher utilization of

the shoulder abduction. Moreover, these plots suggest that this participant has higher motor

variability in the “Viscous” condition; i.e., larger shaded areas, especially for the first joint.

Fig 6 shows the result of our estimation algorithm for the IK weights of all the participants

in the two conditions. In both conditions, the weights for the first and fourth joint are equal to

one. As we presented earlier, we always scale the weights in order to have the largest value at 1.

However, in this experimental setup, the fourth joint is over-specified; i.e., the effect of the

fourth joint on end-effector velocity cannot be written as a linear combination of the other

three joints. Therefore, for the IK, it does not matter what weight the fourth has. However, as a

convention, we set this weight back to one right after solving QP, and we normalize only the

first three first weights.

The estimated IK weights in the “Natural” condition show that, in a redundant configura-

tion, the participants utilize the second and third joints over the first one. However, in the

“Viscous” condition, the weight of the third joint significantly increases. This means the third

joint is less used; consequently, other joints contribute more to the task. The resulting differ-

ence in IK weights (in Fig 6) provides a clear distinction between the two conditions; a

Fig 4. The experimental setup. The ABLE exoskeleton imposes a viscous field on the subjects, forcing them to change

their kinematic behavior.

https://doi.org/10.1371/journal.pone.0278228.g004
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Fig 5. Comparison of a participant’s joint velocities when reaching the three targets in the two different

conditions. The shaded areas represent the standard deviations.

https://doi.org/10.1371/journal.pone.0278228.g005

Fig 6. The estimated IK weights for the 17 participants in the two different conditions. The multivariate T-test

(Hotling) shows a significant difference between the two set of the IK weights; T2 = 225.3, F(2, 15) = 105.6, and

p = 0.000.

https://doi.org/10.1371/journal.pone.0278228.g006
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distinction which is not easy to quantify from the trajectories shown in Fig 5, even though the

qualitative difference is visible to the naked eye.

To go further, we can look at the extracted null-space velocity under the estimated IK

weights. These velocities are illustrated in Fig 7 which is averaged over all participants for the

first reaching target. Moreover, we compare our extracted null-space velocities with the case

where the identity matrix is used; i.e., W = I assuming equal contributions for all joints. Our

results show that a major portion of the data is already explained by estimating the proper

weights; i.e., the extracted null-space velocities are smaller compared to the case with W = I.
Moreover, the “Viscous” condition has a higher level of null-space velocities (with a higher

variance). However, W = I shows the opposite; in the “Natural” condition, humans utilize

their null-space more with a higher variation. These results show that analyses over the null-

space velocities computed with inappropriate weights can be deceptive.

4.3 Experiment 2—Human-robot inter-joint coordination

In this section, we examine an experimental case where the goal is to restore a natural IK strat-

egy (i.e., joint movement) using a robotic prosthetic arm with different control modes. The

proposed IK weights identification method was used to analyze the IK strategy obtained with

the different control modes and identify the one restoring natural IK strategy. To this end, we

asked participants to control a 3-DOF planar kinematic chain shown on a display screen using

their upper body as shown in Fig 8; i.e., the three degrees of freedom on the screen correspond

to the rotation of the hip (q1), shoulder (q2), and elbow (q3) in the sagittal plane. Using

Fig 7. Extracted null-space velocities based on two different assumptions about the weight matrix. The first

column shows the average velocity profiles over all subjects for Target 1. The Second column shows the extracted null-

space velocity using the estimated weight matrix for each participant. The third column illustrates the null-space

velocity when W = I is used.

https://doi.org/10.1371/journal.pone.0278228.g007
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marker-clusters attached to the participants upper body, we tracked and transferred their body

movements ([q1, q2, q3]) to a virtual kinematic chain displayed on a screen (½�q1; �q2; �q3�). While

we directly mapped the hip and the shoulder, different mappings from the participant’s elbow

to the virtual one (�q3) were used in each condition. Here, we detail these conditions:

• Natural: The elbow is directly mapped. Thus, the participant has full/direct control over the

virtual kinematic chain; i.e., _�q3 ¼ _q3.

• Locked: The virtual elbow is locked at a specific angle; i.e., _�q3 ¼ 0. Thus, the participant has

partial control over the virtual chain.

• Coupled: The virtual elbow velocity is coupled to the participant shoulder velocity; _�q3 ¼ _q2.

Thus, the participant has partial but indirect control over the virtual elbow.

• Assistive: The virtual elbow is controlled based on our previously proposed method in [83].

Thus, the participant has partial and indirect control.

In each condition, the participants reached for a sequence of target positions; i.e., 28 differ-

ent targets, each displayed for 6s. We performed this experiment with 10 participants.

The controller used in the Assistive condition can be summarized as follows:

_�q 3 ¼ J#
3
v � N3Kðq � q̂Þ

_v ¼ � aðv � _xÞ

(

ð25Þ

where J#
3

and N3 are the third rows of J# and N, respectively. J# is computed as in Eq 4 with W
= diag([1, 1,.15]). To cancel the compensatory role of the hip and the shoulder, we use K =

diag([2,.2, 0]), and q̂ ¼ ½0; � 2:7; 0� rad. v can be considered as the low-pass filter version of

the end-effector velocity _x with α = 40. In simple words, this proposed method amplifies at the

end-effector level the velocities the human subject creates by the natural joints while helping

the user with the posture. This controller can be seen as a nonlinear task-dependent synergy

approach; i.e., a nonlinear mapping from _q1 and _q2 to _�q3. During this mode, the position of the

virtual elbow (q3) was limited to [0, π] rad.

The results for the estimated IK weights are presented in Fig 9. For the first condition

(“Natural”), we estimate high weights for the hip and shoulder but a low one for the elbow.

Fig 8. (Left) The second experimental setup where a human subject controls a virtual kinematic chain on the screen

using respective bodily joints. (Right) A 3-link planar chain was used in this experiment. The first two joints (q1 and

q2) are directly controlled using the participant’ hip and shoulder, respectively. The virtual elbow (q3) is controlled

differently depending on the experimental condition. This figure is borrowed from our previous work [83] where we

provide further technical details on the experimental setup and the control modes for the virtual elbow.

https://doi.org/10.1371/journal.pone.0278228.g008
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This means the human participants prefer to use the elbow joint even if the same end-effector

velocity can be created using other joints. The result for the second condition (“Locked”) is

straightforward. In this case, the virtual elbow is not contributing to the end-effector velocities,

thus a high IK weight. Moreover, if the same end-effector velocity can be created by the hip or

the shoulder, the participants use the shoulder; therefore, a lower weight for the shoulder. In

the third condition (“Coupled”), we have a low IK weight for the hip. This shows that the par-

ticipants tend to use the hip when it comes to hip-shoulder or hip-elbow redundancy. Further-

more, comparing the IK weight of the elbow to the shoulder reveals that such simple synergy

methods are only effective locally; i.e., the elbow contributes more than the shoulder, while the

hip compensates for the lack of contribution of both shoulder and elbow.

In the last condition (“Assistive”), we have satisfactory IK weights as the joints contribute

more when moving up the kinematic chain (proximal to distal). Compared to the Natural

case, we have a high weight for the hip (i.e., compensation cancellation) and low weight for the

elbow (i.e., proactivity of the prosthetic joint). Thus, the main difference is the behavior of the

shoulder joint. This means that in shoulder-elbow redundancy, the elbow is not fully taking

over the shoulder as in the Natural condition. This result is expected given the nature of decen-

tralized control in leader-follower setups; i.e., the natural joints need to initiate the desired

end-effector velocity as a means for intention communication. In other words, the elbow joint

cannot assist until it observes an end-effector velocity generated by the hip or the shoulder.

This result shows that our proposed estimation algorithm is capable of pinpointing the dif-

ferences across conditions where different control strategies are used for a prosthetic joint.

The resulting IK weights are interpretable (given the IK formulation) and coherent with the

settings in each condition. Moreover, the resulting IK weight favors our assistive controller as

it leads to a set of estimated IK weights that are qualitatively closer to the “Natural” condition.

This result corroborates our previous findings where this type of assistive strategy leads to

lower hip utilization [83]. Hip-utilization is an intuitive metric since the human participants

tend to perform the 2D task mostly with the shoulder and elbow joints in the “Natural” condi-

tion. The participants begin to use the hip joint as compensation when they lose direct control

Fig 9. The estimated IK weights for the 10 subjects in the four different conditions.

https://doi.org/10.1371/journal.pone.0278228.g009
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over the virtual elbow joint; i.e., using the hip and the shoulder joint. Therefore, in this experi-

ment, the inter-joint coordination can be interpreted as non-using the hip joint. In general

cases, the objective of a prosthetic joint can be formulated similarly; i.e., obtaining a “naturalis-

tic” inter-joint coordination or IK behavior which can be quantified using our proposed esti-

mation algorithm. Finally, it is also interesting to note that we use weighted IK formulation in

our proposed controller. As discussed in [83], these nominal weights characterize the dynam-

ics and subsequently influence the system’s performance. However, it is important to note that

the estimated weights are not only a result of the underlying control mechanism but also the

executed motions.

5 Discussion

We here proposed a data-driven approach to quantify inter-joint coordination using weighted

pseudo-inverse of the Jacobian matrix. More specifically, we provided an estimation algorithm

for these corresponding weights that are interpretable in light of Eq 5 as the respective cost of

each joint. As a convention, we assumed these weights to be between zero and one, with the

most costly joint always at 1. Such scaling is possible since only the relative ratio of weights

matters in Eq 4. However, the resulting weights might not be straightforward when we com-

pare different conditions. For example, in Fig 6, the weight of the first joint is one while its

ratio to the third joint changes. To overcome these issues, we can consider a transformation to

represent the level of contribution rather than cost as follows:

bi ¼
w� 1

iP
kw� 1

k
ð26Þ

These “contribution coefficients” sum to one and can be easier to interpret across conditions.

For example, for the first experiment we have β = [0.04, 0.27, 0.65, 0.04] for the natural condi-

tion, which changes to β = [0.09, 0.68, 0.14, 0.09] in the viscous condition. Here, it is quicker to

notice that all joints increase their contribution coefficient to compensate for the third joint.

The same transformation can be applied to the second experiment, which results in Table 1.

In this work, as described in Eq 5, we assumed time-invariant state-independent weights

for our IK formulation. For instance, it can be imagined that fatigue can change the IK strategy

over time. Furthermore, our proposed metric to quantify inter-joint coordination is of “spa-

tial” nature since it averages over all the data points across time. Therefore, this metric is not

capable of pinpointing any temporal coordination. For instance, the two following conceptual

scenarios lead to similar IK weights: 1) two joints equally contribute at all times, 2) the second

joint contributes equally after the first joint is done with its contribution. To overcome this,

one might consider estimating the IK weight for different time intervals of the motion. Com-

paring the estimated weights across intervals might provide insight into temporal coordina-

tion. However, increasing the number of intervals deteriorates the estimation performance;

i.e., increasing the parameters-to-observations ratio. At its limit, we can imagine time-

Table 1. Transformation of IK weights to “Contribution coefficients” for the second experiment.

Condition Contribution coefficient

hip shoulder prosthetic elbow

Natural 0.01 0.01 0.98

Locked 0.15 0.72 0.13

Synergy 0.62 0.08 0.30

Assistive 0.05 0.12 0.83

https://doi.org/10.1371/journal.pone.0278228.t001
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dependent IK weights, which will have the same dimensionality as the kinematic data; i.e., n×T
when n is DoF and T the length of a trial. Thus, those time-dependent IK weights will appear

as a nonlinear (and task-dependent) averaging of the trials, which might bring us closer to spa-

tio-temporal inter-joint coordination. Even if such time-dependent weights are obtained, they

will not directly provide a metric for “temporal” inter-joint coordination.

It is important to consider an essential caveat in interpreting the IK weights when measur-

ing an assistive robot’s performance: not all contribution of a robotic joint to the end-effector

velocity is a contribution toward the human-intended goal. Nevertheless, in such leader-fol-

lower setups, the human corrects (as much as possible) the disturbances that the robotic joint

introduces. In turn, this corrective behavior of the human (which is done by utilizing the natu-

ral joints) affects IK weights for the natural joints; i.e., lower IK weights for the natural joints.

Therefore, such human corrective behaviors provide robustness in analyzing the IK weights

for leader-follower setups.

From a clinical point of view, the IK weights are essential to pinpoint and quantify the com-

pensatory behaviors [16]. For example, IK weights could document the increased use of trunk

flexion to compensate for shoulder-elbow impairment in stroke patients [15], or increased

proximal motion in amputees wearing a prosthesis to compensate for the lack of wrist mobility

[89–91]. Compensatory behavior is critical to document within the clinical assessment to fol-

low the patients’ progress and establish a rehabilitation strategy. Therapy may reduce compen-

satory behavior to avoid “learned non-use” [92] or musculoskeletal disorders. Conversely,

compensatory motions may be trained (skill learning) in order to improve daily life activities

in stroke patients [93] or prosthetic use by amputees [89].

Finally, it is vital to note that this work takes an IK-based approach to only “quantify” the

inter-joint coordination in kinematic data. This does not entail that the individuals (or the

central nervous system) solve a weighted IK problem to create hand movements. Nevertheless,

numerous works in the literature try to explain how the brain handles redundancies [9, 62, 94,

95]. Furthermore, we formulated our estimation problem at the kinematic level; i.e., ignoring

the effect of inertia, gravity, and other dynamical aspects of human movement. Investigating

inter-joint coordination at the level of dynamics might provide a better picture. However, it

would be more cumbersome when we need to estimate the applied torques and the dynamic

properties of the human arm. In such a formulation, we would try to explain how a required

force at the end-effector maps onto joint torques. A similar approach has been explored in

human movement studies [11] and widely used in robotic literature [96]. Nevertheless, the

effect of dynamics (and other higher-level mechanisms such as neural mechanisms) are par-

tially captured at the kinematics level; i.e., the estimated weights are influenced by the dynamic

behavior since joint velocities can be seen as the results of joint torques. The same argument is

applied to the joint limits as their effects are captured by the estimated weights. For instance,

the lack of contribution of a joint that operates near its limit will be reflected as a higher IK

weight.

The identified weights from human data could benefit assistive robotics and neurorehabil-

itation. One current challenge in rehabilitation robotics is the control of exoskeletons which

has to be performed at the joint level; i.e., finding the appropriate reference joint trajectories

which are human-like. While it can be relatively trivial to obtain reference trajectories for the

end-effector [97], finding the corresponding joint trajectories is not straightforward due to the

multiplicity of solutions that arise from the kinematic redundancies. To address these issues,

oftentimes, trajectories are copied from previously recorded movements in healthy subjects,

from recordings from therapists mimicking the reference movement, or are computed based

on some inferred optimality principle of human movements. However, relying on such input

limits the efficacy of the control algorithms because the resulting trajectories are generally
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expressed as time-dependent position values which do not generalize to different movements,

targets, and tasks. This means that the patient’s freedom of movement with the exoskeleton is

limited as coordinated patterns can only be programmed for specific movements [97]. There-

fore, the proposed method could allow extracting IK weights from human data and offer a

more generic tool and less restrictive approach to generating coordinated reference trajecto-

ries. In general, any collaborative robotic device could benefit from this identification method.

For instance, a physically interactive cobot could use such identified weights to exhibit

human-like kinematic behavior, improving the predictability of its user.

6 Conclusion

In conclusion, this work attempted to go beyond correlations analysis when quantifying inter-

joint coordination. To this end, we considered a task-dependent formulation: i.e., the joints

rotate to move the end-effector via the geometric coupling formulated by the Jacobian matrix.

We showed that velocity decomposition into task and null-space highly depends on our choice

for the IK weights. We argued that IK weights should be estimated in order to explain the

observed velocities, mainly using the task-space. Based on this argument, we proposed an opti-

mization algorithm where γ (the null-space projection ratio) plays an important role. To deal

with the nonlinearities with respect to the weight matrix, we solved the problem in a quasi-

static manner. Furthermore, we employed a quadratic programming formulation to respect

the constraints of having positive weights. These resulting weights have clear interpretations:

the joints with higher weights are more costly to be moved to create the desired end-effector

velocity. This view on inter-joint coordination has substantial implications for clinical applica-

tions and robotic applications such as robotic prosthetic arms. We showed the result for two

different experiments where the estimated weights are in line with experimental designs; i.e.,

pinpointing the effect of a viscous field over participant’s joint coordination in the first experi-

ment and favoring a specific assistive controller for a prosthesis in the second experiment.

Supporting information

S1 File.

(PDF)

S1 Dataset. Kinematic recordings from Experiment 1. This dataset is provided as a Matlab

Mat-file containing 17 cells, one per participant. Each cell is organized in a structure with con-
ditions!targets!trials format, where there are two conditions (“Natural” and “Viscous”) and

three targets (Target 1, 2, and 3). The number of trials for each target might vary as we

removed those which had recording issues. Each trail provides joint position, joint velocities,

and end-effector velocities. These quantities are stored in 100×4 matrices; 100 time-steps with

dt = 0.009, and 4 degrees of freedom. Moreover, the Jacobian matrix for each time step can be

found for each trial. Furthermore, in this dataset, we provide some of the quantities which are

computed using the proposed algorithm; i.e., estimated IK weights for each participant, the

estimated null-space velocities based on W = I, and estimated weights for each trial. Moreover,

we provide the concatenated data (over targets and trials) for each condition as “IK_data”

which is ready to be passed to the proposed algorithm.

(ZIP)

S2 Dataset. Kinematic recordings from Experiment 2. This dataset is also provided as a

Matlab Mat-file containing 10 cells, one per participant. Each cell contains the recordings for

four different conditions: “Natural”, “Locked”, “Coupled”, and “Assistive”. In this dataset,

there is a single trial for each condition which contains the time-vector, human joint values (3
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DoF for hip, shoulder, and elbow), virtual elbow (1 DoF), end-effector position, and the posi-

tion of displayed targets. Furthermore, we also provide the prepared data for the proposed

algorithm as “IK_data” for each trial, along with the estimated IK weights.

(ZIP)

S1 Data. Matlab implementation of the proposed algorithm. This source code (compressed

as a zip file) provides a Matlab implementation of the proposed algorithm. The necessary

instruction to run the source code is provided in “ReadMe.txt”.

(ZIP)
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Investigation: Agnes Roby-Brami, Ross Parry, Nathanaël Jarrassé.
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Validation: Mahdi Khoramshahi, Agnes Roby-Brami, Ross Parry, Nathanaël Jarrassé.
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Writing – review & editing: Mahdi Khoramshahi, Agnes Roby-Brami, Ross Parry, Nathanaël
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61. Domkin D, Laczko J, Djupsjöbacka M, Jaric S, Latash ML. Joint angle variability in 3D bimanual point-

ing: uncontrolled manifold analysis. Experimental brain research. 2005; 163(1):44–57. https://doi.org/

10.1007/s00221-004-2137-1 PMID: 15668794
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