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1 Introduction

In the last decades the advancements in robotics revolutionised the world as we knew it.
Breakthroughs were made in many fields: robots are now being adopted in industrial produc-
tion lines, in dangerous situations for humans, for example military operations and hazardous
environments, as well as in search and rescue. Still robots are not very present in everyday
life. This can be explained by the number of challenges that arises in interaction with humans:
multitasking, safety for the user and intuitive interaction are just a few examples.

In most of these applications, the robots are mainly thought to complete a series of specific
tasks by switching between pre-programmed states. However, one of the challenges that is
faced is the ability to handle unforeseen scenarios where the choice of the current task to
complete may be ambiguous. Indeed, as humans users can be unpredictable, it is important
to have a system sufficiently flexible to allow a safe interaction with human beings. Another
important point is that robots intended for cooperative tasks with humans should allow for
intuitive interactions, as to facilitate collaboration between them.

In this setting, this project follows the current state of the art and the current work done in
the lab (presented in Sect.1.1) and tests a new approach to the problem of human-robot coop-
eration and interaction by using visually tracked manipulations. This approach is explained
in details in Sect.1.2.

1.1 Previous work

Previous semester projects implemented a motion adaptation using parametric DS based ap-
proach first as theoretical simulation [1], then on the real robot [2]. The goal of these projects
was for a robot to understand the human intention by allowing the robot to switch behaviour,
that is, to have a motion generator based on DS which would have extra degrees of freedom.
These degrees of freedom, or parameters, would be identified by the robot to best adapt to
human intention.

Furthermore, the project was based on the work done in [3], where the focus was to address
the compliance and the adaptation mechanism of robots at a task-level, by understanding
the intention of the user. In this approach, a dynamical system based framework functions
as motion-generator and as predictive model for the human intention. Moreover, the hu-
man intention manifests as exertion of forces on the robot and deviating from the nominal
trajectories. The details of this approach are presented in Sect.1.3 and 1.4.

1.2 Proposition

Based on the previous works presented above, this project aimed at taking a novel approach
to the problem of human-robot interaction and robot understanding of human intentions in
ambiguous scenarios. More precisely, a new approach would be to communicate with the robot
directly through visual interaction instead of the usual haptic interaction.

In order to do this, it was proposed to introduce an RGB camera that could visualize a
predefined workspace, defined such that a robot’s end-effector could arrive to any point of the
workspace. In this workspace, a number of tasks would be presented to the robot.
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In the scope of this project, the number of tasks was limited to two objects. The tasks in this
project would be presented to the robot under the form of red cubes (an example of which can
be seen in Fig.1), held by a human subject that would handle the tasks in such a way that the
robot could track them using the RGB camera. The human subject would then propose one
of the tasks to the robot by moving it closer to it. The idea is that the robot should converge
to the proposed task, and it could then operate on it. The steps for this case scenario can be
seen in Fig.2a-2c for a right-sided hand-over and in Fig.3a-3c for a left-sided hand-over.

Additionally, a second scenario would be to take away the previously proposed task before
the robot could converge on it, while approaching the second one to the robot. An algorithm
should be designed such that this correction should cause the robot to converge to the newly
proposed task. An example of this scenario can be seen in Fig.2d-2f for a right-sided hand-over
and in Fig.3d-3f for a left-sided hand-over.

Figure 1: Example of the red objects used as tasks in the videos, with a pen as size reference

3



Semester Project Carta Camilla

(a) Simple - step 1 (b) Simple - step 2 (c) Simple - step 3

(d) Correction - step 1 (e) Correction - step 2 (f) Correction - step 3

Figure 2: Examples of right-sided hand-overs for the simple hand-over scenario and a correc-
tion scenario

(a) Simple - step 1 (b) Simple - step 2 (c) Simple - step 3

(d) Correction - step 1 (e) Correction - step 2 (f) Correction - step 3

Figure 3: Examples of left-sided hand-overs for the simple hand-over scenario and a correction
scenario

Both scenarios are particularly challenging as there is no exact solution. Indeed, this kind of
setup can lead to ambiguous situations, where there is no obvious task which the robot should
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operate on. Thus it is necessary to find a decision-making method allowing the robot to
coherently decide which task to converge to. In Fig. 4 an example of an ambiguous situation
is presented.

In order to generate the motion of the robot and to fulfil the tasks, we employ Dynamical
Systems (DS) which is explained in detail in Sect. 1.3 and 1.4. Different adaptation rules were
discussed and tested on a series of benchmarking videos that reproduced the two scenarios
explained above. The series was constituted of 40 videos in total, equally split between the
two cases. In the 20 videos for the simple case, 10 were of a right-sided hand-over, each with
a different type of movement (examples of which are shown in Fig. 5). These movements
were repeated symmetrically for the left-sided hand-over. The same was then done for the
hand-over case with correction.

Figure 4: In this figure, the visualization of the Matlab implementation can be seen. The task
positions are circled (task 1 in red and task 2 in white) while the robot end-effector position is
represented by the black dot. In this particular case, the robot is stuck in between two static
tasks, which are at the same distance from it. In this case, it is difficult to establish which
would be the "right" task to move towards
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(a) Straight line (b) Diagonal line (c) External L

(d) Internal L (e) Straight noisy line (f) Diagonal noisy line

Figure 5: Examples of trajectories used as benchmarking videos

1.3 Motion planning using dynamical systems

As a reminder, this project was done in continuity with two previous semester projects ([1] and
[2]) and with the work done on task-adaptation ([3]). For the approach used in these papers,
DS are used for motion generation and for task identification. Fig. 6 shows a simplified version
of the mechanism of motion planning used in the previous works, which lays the basis for this
project. It can be seen that a DS based module is in charge of computing a desired velocity ẋd.
The robot is then controlled in velocity by the resultant velocity of the module. The robot’s
velocity ẋr then follows the direction of the DS. Indeed, this mechanism can be used to direct
the robot towards a specific attractor. In Fig. 7, an example of such motion generation can be
seen. A DS, represented by the gray streamlines, results in the final trajectory in black. When
an external disturbance is applied, in this case the interaction of a human subject, the robot
deviates from the nominal trajectory and resumes following the DS after the perturbations.

ሶ𝑥𝑑 = 𝑓(𝑥) Robot

Dynamical System Velocity controlled

ሶ𝑥𝑑

𝑥

𝑓1(𝑥)

Robot
ሶ𝑥𝑑

𝑥

𝑓1(𝑥)

𝑏1

𝑏2

Adaptation rule

ሶ𝑥𝑟

Figure 6: Architecture of the motion planning
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Human interaction

Figure 7: DS based motion generation behaviour when subjected to external perturbations

1.4 Task adaptation using Dynamical systems

ሶ𝑥𝑑 = 𝑓(𝑥) Robot

Dynamical System Velocity controlled

ሶ𝑥𝑑

𝑥

𝑓1(𝑥)

Robot
ሶ𝑥𝑑

𝑥

𝑓2(𝑥)

𝑏1

𝑏2

Adaptation rule

ሶ𝑥𝑟

Figure 8: Architecture of the task adaptation mechanism for a scenario with static tasks where
f1 and f2 are the DS associated with the task 1 and 2 respectively, b1 and b2 are the beliefs
associated with task 1 and 2 respectively, ẋd is the desired velocity which commands the robot,
and ẋr is the actual velocity of the robot, x is the robot position.

Fig. 8 presents the structure of the task adaptation approach used in [3] for two static tasks.
It can be seen that the motion generator corresponds to the following linear combination:

ẋd =
N∑
i=1

bifi (1)

The tasks are identified through values assigned to each, which are the beliefs (bi). These

7



Semester Project Carta Camilla

values must respect the following conditions:

N∑
i=1

bi = 1 and 0 ≤ bi ≤ 1 (2)

The beliefs are updated at each iteration by an adaptation rule, which is based on the DS
results, the robot’s desired velocity and the robot current velocity. In particular the adaptation
rule in [3] uses the following adaptation mechanism to calculate the vector of belief-update:

˙̂
bi = −ε(|ẋr − fi|2 + 2

∑
j 6=i

bjf
T
j fi) (3)

where the parameter ε is the adaptation rate.

In a second step, the beliefs are recalculated using the Winner-Takes-All (WTA) process,
which was taken from [3] and is reported in Alg. 1.

Algorithm 1 Winner-Takes-All
Input:A vector of beliefs B = [b1, ..., bN ]

Input:A vector of belief-updates ˙̂
B = [

˙̂
b1, . . . ,

˙̂
bN ]

1: w ←− arg max
i

˙̂
bi

2: if bw = 1 then
3: ḃi ←− 0 for ∀i
4: return Ḃ
5: end if
6: ν ←− arg max

i

˙̂
bi ∀i 6= w

7: z ←− (
˙̂
bw +

˙̂
bν)/2

8: ḃi ←− ˙̂
bi − z ∀i

9: S = 0
10: for i do
11: if bi = 0 or ḃi > 0 then
12: S ←− S + ḃi
13: end if
14: end for

As effect of the WTA process, the two highest belief-updates ˙̂
bw and ˙̂

bν are taken and their
average subtracted. As shown in Fig. 9, this allows to calculate the beliefs derivatives, which
in return indicate how the beliefs b1 and b2 are changing. As such, only one task (i.e., the
winner) has a positive update. This allows the belief of the most similar task to increase and
the other beliefs to diminish.
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Figure 9: The belief update mechanism

Fig.10 shows the application of the adaptation rule detailed above. In this case, for two fixed
tasks (represented by the DS f1 and f2) a same robot trajectory is represented in red for the
referential of the task 1 and in green for the referential of the task 2. This case represents
a robot approaching two fixed tasks under human supervision. While at the beginning the
trajectory of the robot is straight towards the tasks and shows no decisive preference, a human
intervention steers the robot towards task 2, which is finally the task the robot converges to.
It can be observed that the robot trajectory coincides better with the second DS than with
the first one, as such the robot converges towards the second task.

Figure 10: Example of the adaptation rule application for fixed tasks and with human haptic
intervention. Human-generated motion is compared against two dynamical system where the
second one has higher level of similarity.
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2 Methodology

In Sect. 1.4, the implementation used in [3] was presented. In this section, a modified
implementation to adapt to the new approach is presented. Indeed, the previous approach
only took into account static tasks, more precisely tasks with a defined spatial position. For
this project, the tasks are moving objects, as such their dynamic positions and velocities
were to be considered into the motion planning for the robot, as well as in the adaptation
mechanism.

Moreover, different adaptation rules were studied for this project and are detailed below.

2.1 Motion generation

In Fig. 11 the architecture of the algorithm implemented for this project is presented. By
comparing this architecture with the one presented in Fig. 8, it can be seen that the tasks
positions x̄i and velocities ˙̄xi are dynamical variables that have to be integrated in the motion
generation and in the task adaptation.

ሶ𝑥𝑑 = 𝑓(𝑥) Robot

Dynamical System Velocity controlled

ሶ𝑥𝑑

𝑥

𝑓1(𝑥)

Robot
ሶ𝑥𝑑

𝑥

𝑓2(𝑥)

𝑏1

𝑏2

Adaptation rule

ሶ𝑥𝑟

𝑓(𝑥 − ҧ𝑥1)

Robot
ሶ𝑥𝑑

𝑥

𝑓(𝑥 − ҧ𝑥2)

𝑏1

𝑏2

Adaptation rule

ሶ𝑥𝑟

ҧ𝑥1

ҧ𝑥2

ሶ ҧ𝑥1
ሶ ҧ𝑥2

Figure 11: Architecture of the new task adaptation mechanism where f is the DS in charge of
motion generation, b1 and b2 are the beliefs associated with task 1 and 2 respectively, ẋd is the
desired velocity which commands the robot, ẋr is the actual velocity of the robot, x is the robot
position, x̄1 and x̄2 are the task-target positions, ˙̄x1 and ˙̄x2 are the task-target velocities.

It is assumed that the position of each object is available as x̄i. Moreover, a dynamical system
f generates reaching motions for a given target as follows (e.g., the first object).

ẋd = f(x− x̄1) (4)

However, in the adaptive case, the two reaching motions are combined based on the beliefs bi
as follows.

ẋd =
N∑
i=1

bif(x− x̄i) (5)

In the following, different adaptation rules to update such beliefs according to the motion of
the tasks are described.
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Figure 12: Example of the task adaptation for the new implementation in a scenario with two
tasks (task 1 in red and task 2 in green, while the gray arrowed lines indicates the form of
the DS f). The robot would then be the attraction point of the DS f in [0, 0]. It is important
to notice that here the tasks are moving independently from the robot. In this case, the robot
is trying to identify which of the tasks should be the target. As such the tasks velocities are
compared to the DS f . Task 1 is further from the robot and its trajectory is not coinciding with
the DS as much as the trajectory of the 2nd task, which is also the closest one to the robot. As
such, 2nd task should be identified as the target.

2.2 Adaptation

Adaptation rule 1 Initially, the following reasoning was developed: as the objective was
to have the robot to move towards the task going towards it, a cost function that minimizes
the sum of the inner products between the velocities of the robot and of the tasks should be
developed. Consider the following cost function:

J1 =

N∑
i=1

bif(x− x̄i)T ˙̄xi (6)

This cost function will be minimized by adapting to the task which has the velocity aligned
with the reaching velocity given by f but in the opposite direction. This can be visualized in
Fig. 13.

The adaptation rule for beliefs derived from this cost function can be calculated as follows.

˙̂
bi = −ε∂J1

∂bi
= εf(x− x̄i)T ˙̄xi (7)
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ҧ𝑥1

ҧ𝑥2

ሶ ҧ𝑥1

ሶ ҧ𝑥2

𝑏1 = 0.6

𝑏2 = 0.4

𝑓(𝑥 − ҧ𝑥1)

𝑓(𝑥 − ҧ𝑥2)

ሶ𝑥𝑑 =𝑏𝑖𝑓(𝑥 − ҧ𝑥𝑖)

ҧ𝑥1
ሶ ҧ𝑥1

−𝑓(𝑥 − ҧ𝑥1) ҧ𝑥2

ሶ ҧ𝑥2

−𝑓(𝑥 − ҧ𝑥2)

Figure 13: Example of application for the 1st adaptation rule. It can be seen in the first image
that two tasks have different velocities ˙̄x1 and ˙̄x2. They also have different beliefs b1 = 0.6
and b2 = 0.4. The desired velocity coming from the motion generation is then the linear
combination shown in Eq. 5. In the two images below the cost function application can be
observed: for the task 1, the task velocity ˙̄x1 is compared with the opposite of the reaching
velocity given by f and the same is done for task 2. It can be seen that the inner product
between these two vectors will be higher for task 1 than for task 2. As such the belief of task 1
will increase and the belief for task 2 will decrease

Adaptation rule 2 The first adaptation rule, once implemented, showed some weaknesses:
in particular, the main limit was that it would not take into account the distance of the tasks
from the robot, but only their velocities. For example, for stationary objects ( ˙̄xi = 0) the first
adaptation would lead to no belief updates. This brought to design a new adaptation rule
which would take the distance aspect into account.

Consider the following cost function

J2 =

N∑
i=1

bi || ˙̄xi + f(x− x̄i)||2 (8)

This cost function, as well as the previous one, minimizes the dissimilarity between the object’s
velocity ( ˙̄xi) and its expected velocity (−f(x− x̄)).

The adaptation rule for beliefs derived from this cost function can be calculated as follows

˙̂
bi = −ε∂J2

∂bi
= −ε|| ˙̄xi + f(x− x̄i)||2 (9)

As such, for static tasks ( ˙̄xi = 0), the new cost function leads to ˙̂
bi = −ε||f(x− x̄i)||2.

12
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Adaptation rule 3 Both previous methods were found to have some strengths and weak-
nesses. As such, it was decided to test an approach that would combine both methods.

By expanding J2, different terms can be found.

J2 =
N∑
i=1

bi (|| ˙̄xi||2 + ||f(x− x̄i)||2 + f(x− x̄i)T ˙̄xi) (10)

The minimization of the first term requires the object to move slowly, as the minimum of
the norm of the vector would be 0. The second term requires the generated reaching motions
to be slow (in other words, the object to be close if f(x) ∝ ||x||2). Finally, the third term
is equivalent to J1. From the second term derives that fast objects, even if approaching the
robot, will not be recognised. Since it is not desirable for the adaption to be influenced by
the objects velocities (i.e., || ˙̄xi||2), a final cost function was proposed as follows:

J3 =
N∑
i=1

bi (f(x− x̄i)T ˙̄xi + β||f(x− x̄i)||2) (11)

where β controls the influence of the task-target positions.

The corresponding adaptation rule is as follows.

˙̂
bi = −ε∂J3

∂bi
= −ε(f(x− x̄i)T ˙̄xi + β||f(x− x̄i)||2) (12)

2.3 Matlab code

In order to prototype the adaptation mechanisms rapidly, Matlab 2017b was used. More
precisely, the video tracking of the tasks and a simulation of the robot’s decisions and motion
was implemented in order to test and validate ideas that were discussed during development.
Moreover, the vision element was implemented in 2D. This can be defended by the fact that
the RGB camera used in the experiments would be set up with a top down view and could
thus extract the position of the task. As such, this 2D prototype remains similar to the real
robot’s setup in the sense that a proper inverse kinematic would remain to be used in order
to replicate the results on the hardware.

Initially, videos of possible scenarios were recorded by a RGB camera with varying resolutions
(240p 4:3 30fps, 480p 4:3 30fps and 720p 16:9 30fps). These videos were constituted of a
human subject holding two red cubes in a such a manner that only the cubes and the hands
holding them were visible, positioning them on the left side of the image. The cubes were
then moved in a way deemed interesting for the purpose of the project. a selection of these
motions are reported in Fig. 5.

In the image processing module, the videos were read frame by frame and a simple image
processing filter, described by Eq. 13, was used.

justRed = r − 0.5 ∗ (g + b); (13)

where
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justRed is the resulting image containing the red intensity,

r, b, g are respectively the red, blue and green channels of the original frame.

This filter would extract the relevant coloured information, red in this case. By using a
threshold, the image was then transformed in a black and white binary image, which would
contain white blocks in the place of the red cubes. The threshold was dependent on the light
conditions, as such it was tuned empirically. The best results were given by a threshold of
70% of the image after filtering (justRed).

A blob detection algorithm, given by regionprops in Matlab 2017b, was then used to find
the center position of the blobs xi. In order to obtain better results with the blob detection,
it was deemed necessary to filter the image again, by applying an "open" operation following
Eq. 14. This would reduce the number of small white spots that could be found by the blob
detection algorithm.

Figure 14: Morphological structuring element

OUT = BW ◦ SE (14)

where

OUT is the output of the filter,

BW is the black and white image before filtering,

SE is the chosen morphological structuring element, which can be seen in Fig. 14.

Thenceforth, a dynamical processing module took care of all the dynamical calculations
and was successfully run in real time. In particular, the layer handling applied a linear low
pass filter to the positions of the tasks x̄i. Filtering the tasks positions was deemed essential
as it would guarantee the continuity of the tracking even in the case where the tasks would
disappear for a short or long time. Indeed, if the tasks were to suddenly disappear from the
video, the filtered positions x̄i would behave independently, by going outside the limits of the
workspace after a certain delay.
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In the dynamical processing module, the different adaptation rules presented in Sect. 2.2
were implemented by the adaptation function module. Finally the dynamical processing
module used all the informations to calculate the trajectory and velocity of the robot end-
effector. In particular the robot velocity was saturated in order to avoid violent spikes in its
movement.

The full code structure is resumed in Fig. 15 and an example of the implementation is shown
in Fig. 16.

Figure 15: Matlab architecture

(a) Target task is task 1 (in white) (b) Target task is task 2 (in white)

Figure 16: Example of the Matlab implementation: the two tasks are tracked in position (rep-
resented by the black asterisks), their filtered positions are shown (represented by the circles)
which also show the associated task colour (red or green) and the targeted task (in white). Their
velocities are represented by red arrows. For the robot, its end-effector position is represented
by the black dot and its velocity is also shown.

15
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3 Results

In this section the results obtained using the implementations of the different adaptations
described in Sect. 2.2 are shown. The results were obtained by testing the different adaptation
rules on a set of benchmarking videos, as described in Sect. 1.2. The results of the tests were
collected and the belief corresponding to the task that should be targeted was plotted for each
video. The graphs were divided depending on the side of the winning task (left or right),
for the complexity of the hand-over (simple or with correction) and for the corresponding
adaptation rule (1, 2 or 3), coinciding respectively to Eq. 7, 9 and 12.

Moreover, the free parameters of these adaptation rules were also tested. For algorithm 1 and
2, the only parameter to test was ε, which acts as the adaptation rate. The values for which
it was tested were [0.001, 0.01, 0.1, 0.5].

For the 3rd algorithm, two free parameters were tested: ε and β. More precisely, for each ε
value as mentioned previously, β was tested for the following values: [0.5, 2, 10].

3.1 First adaptation rule

The first adaptation rule corresponded to the formulation described in Eq. 7. The results of
this implementation are shown in Fig. 17 for a simple hand-over and in Fig. 18 for a hand-over
with correction. In particular, the beliefs for the task to be targeted were plotted.

(a) ε = 0.001 (b) ε = 0.01 (c) ε = 0.1

(d) ε = 0.001 (e) ε = 0.01 (f) ε = 0.1

Figure 17: Results for left (top row) and right (bottom row) simple hand-overs using the first
adaptation rule

16



Semester Project Carta Camilla

(a) ε = 0.001 (b) ε = 0.01 (c) ε = 0.1

(d) ε = 0.001 (e) ε = 0.01 (f) ε = 0.1

Figure 18: Results for left (top row) and right (bottom row) hand-overs with correction using
the first adaptation rule

It can be seen that the results are quite promising. Indeed, the beliefs of the targeted task
should tend to 1. In the simple scenario, it is expected for the beliefs to directly converge to
1, while for the scenario with correction it is expected to see a switch in the beliefs, which
should first tend to 0 and after the correction converge towards 1. It is also expected that the
switch would happen promptly.

It can be seen here that for the simple scenario the beliefs quickly stabilize to 1 most of the
time. As for the second scenario, the beliefs seem to switch correctly and quite rapidly, which
is the wanted behaviour. Nevertheless, some problems with this method were found and are
discussed in Sect. 4.

3.2 Second adaptation rule

The results corresponding to Eq. 9 are shown in Fig. 19 for a simple hand-over and in Fig.
20 for and hand-over with correction.

17
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(a) ε = 0.001 (b) ε = 0.01 (c) ε = 0.1

(d) ε = 0.001 (e) ε = 0.01 (f) ε = 0.1

Figure 19: Results for left (top row) and right (bottom row) simple hand-overs using the second
adaptation rule

(a) ε = 0.001 (b) ε = 0.01 (c) ε = 0.1

(d) ε = 0.001 (e) ε = 0.01 (f) ε = 0.1

Figure 20: Results for left (top row) and right (bottom row) hand-overs with correction using
the second adaptation rule

From the figures above, it can be seen that the behaviour of this adaptation rule is quite
different from the previous one. In particular, while it was tested for the same values of ε, it
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seems more sensitive when higher values are used, while for lower values it does not seem very
reactive. This results are discussed more in details in iSect. 4.

3.3 Third adaptation rule

The 3rd adaptation rate was tested for two different parameters: ε = [0.001, 0.01, 0.5] and
β = [0.5, 2, 10]. For each value of ε, all values of β were tested.

(a) β = 0.5 (b) β = 2 (c) β = 10

(d) β = 0.5 (e) β = 2 (f) β = 10

Figure 21: Results for left (top row) and right (bottom row) simple hand-overs using the third
adaptation rule with ε = 0.001

19
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(a) β = 0.5 (b) β = 2 (c) β = 10

(d) β = 0.5 (e) β = 2 (f) β = 10

Figure 22: Results for left (top row) and right (bottom row) simple hand-overs using the third
adaptation rule with ε = 0.01

(a) β = 0.5 (b) β = 2 (c) β = 10

(d) β = 0.5 (e) β = 2 (f) β = 10

Figure 23: Results for left (top row) and right (bottom row) simple hand-overs using the third
adaptation rule with ε = 0.5
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(a) β = 0.5 (b) β = 2 (c) β = 10

(d) β = 0.5 (e) β = 2 (f) β = 10

Figure 24: Results for left (top row) and right (bottom row) hand-overs with correction using
the third adaptation rule with ε = 0.001

(a) β = 0.5 (b) β = 2 (c) β = 10

(d) β = 0.5 (e) β = 2 (f) β = 10

Figure 25: Results for left (top row) and right (bottom row) hand-overs with correction using
the third adaptation rule with ε = 0.01
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(a) β = 0.5 (b) β = 2 (c) β = 10

(d) β = 0.5 (e) β = 2 (f) β = 10

Figure 26: Results for left (top row) and right (bottom row) hand-overs with correction using
the third adaptation rule with ε = 0.5

Here above the results for the 3rd adaptation rule are shown. Different parameter values were
tested, although these results do not seem to vary as much as one could expect. Moreover, it
did not seem possible to reduce the noise on the beliefs. Further discussion about the results
and what could be needed to obtain a more performant results is presented in Sect. 4.
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4 Discussion

The results shown in Sect. 3 showed that a method to enable visual communication between
a human subject and a robot through direct task manipulation was successfully developed
and implemented. With regards to performance, the results were satisfactory but may be
improved.

One difficulty encountered early on was that the benchmarking videos were often changing
luminosity violently (as can be seen in Fig. 27), which was probably due to incorrect settings
of the webcam they were recorded with. In order to strengthen the implementation against
noisy surroundings, these settings were used nevertheless. In order to deal with task detection
noise, the tasks positions are filtered and stored. At each frame iteration, the distance between
the previous filtered positions and the new raw positions is calculated and each raw position
is assigned to the closest filtered position.

(a) Before luminosity change (b) After luminosity change

Figure 27: Example of noisy blob detection

In Sect. 3.1, the results of the first adaptation rule are shown. It can be noticed in Fig. 17
and in Fig. 18 that most of the time the beliefs are correctly identifying the task that should
be targeted, although it can be observed that for one specific case, the behaviour was always
incorrect.

It can also be seen that the beliefs are very reactive and quickly switch and saturate. This
can be noticed especially in the correction scenario, where the switch from 0 to 1 is very fast.

Nevertheless, a problem was encountered while testing the 1st adaptation law on Matlab: in
both the simple and complex scenario, the robot would choose correctly the task to approach
in the beginning. But as it got close to the task with a certain speed, the robot would pass
the task position and continue to pursue the other task after switching the belief. This is due
to two main factors:

• the adaptation rule in this case depended only on the velocities of the tasks, as such
their position was not considered. This explained why the robot, when surpassing the
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task, would switch belief, as in the robot’s referential the first task velocity would have
switched sign.

• the adaptation rules were tested on pre-recorded videos, which can be compared to
testing in "open-loop". More precisely, there was no way to adapt in real time to the
robot’s behaviour, which would be possible in a real setting.

This effect could be avoided by cutting the last second of the simulations or by reducing the
velocity of the robot by lowering the saturation threshold. Nevertheless it can be considered
a weakness of this adaptation rule.

Figure 28: Example of complete plot of beliefs. It can be noticed that in the last part, the beliefs
tend to return to 0.5

(a) Step 1 (b) Step 2 (c) Step 3

Figure 29: Example of "bad" behaviour for the first adaptation rule. As the task adaptation
depends on the tasks velocities, the robot sees the target task velocity switch direction when it
surpasses the task position. It then changes belief and starts moving towards the other task

In Sect. 3.2, the results for the second adaptation rule are shown. It can be seen in Fig. 19
and in Fig. 20 that, although the results seem less noisy compared with the previous ones,
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the decision-making is in this case slower to attain high values of belief. It can also be seen
that the parameter ε influences this effect quite dramatically. The solution to a slow decision
making was then to increase the ε parameter to 0.1, which then gave results similar to the
ones from the previous adaptation rule. It can also be noticed that some results of the simple
scenario are quite noisy after stabilization. This is mainly due to the detection noise, which
as shown in Fig. 27 sometimes causes random variations of the task position. This could be
improved by checking that the task position is not moving further than a certain distance at
every iteration.

In Sect. 3.3, the results for the third and final adaptation rule are shown. In Fig. 21, 22 and 23
results for the simple scenario can be observed. It can be noticed that there is similarity with
the results from the first adaptation rule. It also seems that by increasing either parameter,
the noisiness of the beliefs does not improve greatly. Nevertheless, increasing β seems to have
an effect mainly at the end of the simulation, by helping the robot to converge on the closest
task. On the other hand, increasing ε unstabilizes the results, which become noisier. Similar
observations can be made for the Fig. 24, 25 and 26 which correspond to the correction
scenario. To improve the performance of this rule, another test was made with β = 100 and
ε = 0.01, whose results can be seen in Fig. 30. This results seem to have less noise and to
have clear and fast decision-making, as such it can be convened that the 3rd rule should be
further tested for higher values of β and/or lower values of ε.

(a) Simple left (b) Simple right (c) Correction left (d) Correction right

Figure 30: The 3rd adaptation rule tested for ε = 0.01 and β = 100

Success rate Here below the success rates for each algorithm in function of the parameters
tested are reported. In order to obtain them, the number of correctly classified target tasks
(cf. the number of beliefs higher than 0.5) was counted for each method. In Table 1, 2 and
3 the success rate percentages are reported. It can be observed that the best performance is
given by the second adaptation rule, although the score of the third adaptation rule is lowered
by parameters that give worse results (β = 0.5 in particular). This reconfirms the importance
of considering distance between the robot and the tasks in the optimization.

It is worth noticing that the success rate is not the only valuable performance. The rapidity
of the switch of belief when the target changes and the quantity of noise in the belief are also
important criteria. For the prompt response to target changes, the three rules can be quite
fast, although the second rule needs higher ε values to achieve similar results as the others.
As for the noise, the most stable seems to be the second one based on the results obtained.

As discussed above, further tests should be conducted on the three rules, particularly on the
final one, as other parameter values can be found which could have promising results.
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ε = 0.001 ε = 0.01 ε = 0.1

Adaptation rule 1
Simple 85.0% 85.0% 90.0% 86.7%
Correction 100.0% 95.0% 95.0% 96.7%

92.5% 90.0% 92.5% 91.7%

Table 1: Success rate for adaptation rules 1

ε = 0.001 ε = 0.01 ε = 0.1

Adaptation rule 2
Simple 95.0% 95.0% 95.0% 95.0%
Correction 95.0% 95.0% 100.0% 96.7%

95.0% 95.0% 97.5% 95.87%

Table 2: Success rate for adaptation rule 2

ε = 0.001 ε = 0.01 ε = 0.5

Adaptation rule 3
Simple
β = 0.5 75.0% 75.0% 75.0% 75.0%
β = 2 85.0% 85.0% 85.0% 85.0%
β = 10 100.0% 100.0% 100.0% 100.0%
Correction
β = 0.5 45.0% 65.0% 65.0% 58.3%
β = 2 90.0% 95.0% 95.0% 93.3%
β = 10 90.0% 90.0% 90.0% 90.0%

80.83% 85.0% 85.0% 83.6%

Table 3: Success rate for adaptation rule 3
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5 Conclusion

In this project, the recognition of human intentions in ambiguous situations was studied. In
particular, the project aimed to develop an approach that would allow to communicate with
a robot exclusively through visual interaction through task manipulation.

In order to delineate the scope of the project, a hand-over situation was studied, where a
human subject would offer one of two tasks to a robot. Two cases were considered: a simple
one where the task would be offered directly; a more complex one where the task offered
initially would be withdrawn and the second task would be then offered to the robot.

As such, a decision-making method was developed through the use of dynamical system based
mechanisms. It was then possible to test different approaches by implementing a simulation
on Matlab. This implementation would receive a pre-recorded video, track the tasks and
generate a motion by adapting to the tasks movement.

To attain a coherent behaviour, a set of pre-recorded videos was created and different adapta-
tion rules were tested. All the rules were capable of discerning human intention, to different
degrees of success. In particular, the second adaptation rule was able to achieve a success
rate close to 100%. The pre-recorded videos contained unwanted changes in luminosity as
well: this gave the opportunity to test the robustness of the implementation, which was quite
satisfactory but can be improved.

Future work As discussed above, the final adaptation rule should be tested on different
parameter values from those shown in the Results section, as it showed promising results that
could be further optimized. A next stage could be to find a systematic tuning optimization,
possibly by using machine learning techniques.

The Matlab implementation was successfully run in real-time during simulation, nonetheless
the next step would be to adapt the complete algorithm to the ROS framework, although
some steps were already made in that direction during this project.

Moreover, the vision processing could also be improved, by assuring the continuity of the task
position tracking and the ability to consider a higher number of tasks.
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