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Chapter 1

Introduction

1.1 Motivations

When it comes to learning real-world manipulation tasks (grasping an object, catching a ball, etc)
common machine learning algorithms are sometimes unable to come up with feasible solutions, or at
least fail to do so in an acceptable computational time. This is mostly due to the size of the action-state
space which has to be explored, exponentially growing with the dimensionality of a given problem. A
natural way to accelerate the learning process is to provide a learning algorithm with prior beliefs on its
environment, as well as demonstrations of the task.

Such prior beliefs are often achieved thanks to demonstrations (assumed to be near optimal) performed
by a human teacher. Even though this approach is covered in the literature (see 1.2), it is not really clear
how to learn from a suboptimal teacher, regardless of its level of sub-optimality. Such learning abilities
could enlarge the human - robot interactions possibilities, as only little knowledge in robotics or artificial
intelligence would be needed to help a robot learn a task.

We call a teacher suboptimal if it provides imperfect demonstrations of a task. A demonstration can
be imperfect in many ways. For instance, it could poorly transfer to the robot abilities, or simply be a
naive way of completing the considered task (in the sense that it does not optimize a numerical criterion
evaluating the fitness of an agent’s behavior). Also, we will use the term largely suboptimal for teachers
providing demonstrations that are harmful for the learner or present obvious drawbacks at completing a
task.

Throughout this semester project, we wanted to gather some intuition on how to learn from (largely)
suboptimal teachers. The following examples motivate the approach we decided to follow.

1.1.1 Motivating examples
Let’s consider the example of a robotic arm learning to grasp an object: an unexperienced teacher

might provide demonstrations that operate near the robot’s workspace limits (which is often undesirable
in robotics). Even if the robotic arm should not trust this demonstration if it wants to learn an optimal
solution, it would be unwise to simply discard it since it contains important information relative to
the task (pose of the object, joint coordination, etc). We must therefore find a way to exploit such
demonstrations in order to extract relevant information without falling into its suboptimal reproduction.

We can rephrase the previous problem by considering the case of a child learning to dance (or any
other technical skill). Because the dance teacher does not have the same physical abilities as the child,
she/he might give her/him a suboptimal way (with respect to the child’s physical abilities) of performing
dance moves. In a ideal learning process, the child would use the prior information given by the teacher to
practice. She/he will soon be aware of her/his own abilities, and can then start learning by herself/himself,
exploring around what she/he has learnt so far. She/he might find that, by slightly changing how he
performs some moves, she/he is able to dance better than by blindly listening to the teacher. Therefore,
the learning child will first be compliant with the teacher, before trying things out by herself/himself
once it has become skilled at performing the learned task.

3



1.2. LEARNING FROM DEMONSTRATION CHAPTER 1. INTRODUCTION

1.1.2 Goal
This semester project aims at introducing a theoretical formulation of this compliance-based behavior,

and experimentally test its performance on simple problems.

The underlying goal behind this objective is to get better intuition about how interactive learning
between humans and robots can be achieved. Indeed, we would like to be able to teach a robot from
demonstration not only by providing it a large number of trajectories that it will then use as a motion
generator, but through interaction. This can be done by showing a robotic arm, at different times of its
learning procedure, concrete examples of possible solutions.

This approach also allows us to tackle a somehow different but related problem. Indeed, the teacher
might not be a human but another learner, only better trained than the current learner. In such a case,
we would like the learner to quickly find if it can trust its mentor, and if not where it should focus its
computations to overcome its mentor’s sub-optimality. Such questions will therefore be tackled in this
report.

1.2 Learning from Demonstration

The process of mapping states to actions (also called policy) is crucial for many robotics applications.
The development of policies by hand is particularly challenging for real-world tasks, and requires a fairly
advanced level of expertise. This is why machine learning techniques have been applied to derive policies.

Learning from demonstration (LfD) is a framework where a robot can learn a policy from interacting
with a human. It particularly focuses on the cases where a mentor provides demonstrations on how to
perform a task. LfD mostly lies on the principle that the learning robot can be taught new tasks by
end-users, without having to be programmed again. Such robots must therefore be able to generalize
from demonstration, namely to infer the task the teacher is demonstrating. Therefore, LfD shows great
promises for a global use of robotics systems outside of expert communities. Another main advantage of
LfD is to focus the dataset in areas that actually matter for a given task or problem.

Learning from demonstration is still a hot research topic, and gives rise to different technical and
theoretical issues. A complete introduction to this subject can be found in [1]. One common approach is
to draw inferences for a policy - thanks to statistical learning tools - from the teacher’s demonstrations
(that are therefore used in a supervised learning way to learn a motion generator). This technique is
known as behavior cloning or the mapping function approach (see [2]), and was successfully used for many
applications (see [3] and [4] for examples). However, this method is applicable only if the reproduction
of the task by a learner operates in a somehow similar context as in when the demonstrations were
performed. Hence, the task might need to be re-learned when the environment slightly changes. This
last remark is one of the main argument for the use of reinforcement learning based methods for learning
from demonstrations. Indeed, in this framework, an agent could discover new control policies by itself,
while getting help from the initial demonstrations.

The use of reinforcement learning in the context of learning from demonstrations has been studied
under many different aspects, and is still an active research field. A natural way to use demonstrations
in a reinforcement learning approach is to use them as bootstrap for a reinforcement learner (see [1]). For
instance, one can use the teacher’s policy as a roll-out to get an initial estimate of the value of different
teacher actions. The approach that we are more interested in involves using demonstration at exploration
time. For instance, one could decide to let the demonstrator take over during one trial, or even create
mixtures of policies involving the teacher’s one in a policy search context (see [5]). In a exploration-
exploitation tradeoff context, the idea of using a policy guided by the teacher was also used in [6]. The
idea followed in this report somehow relates to the last two ones, but enables to have adaptive mixtures
/ exploratory policies.

Another approach to LfD was recently developed in the framework of Inverse Reinforcement Learning
(IRL). The main justification of this approach comes from the fact that engineering a well-behaved reward
function quickly becomes intractable for complex tasks. The idea of IRL (at least in a LfD context) is

Chapter 1 Semester project report 4



1.3. OUTLINE CHAPTER 1. INTRODUCTION

therefore to consider the demonstrations as expert moves, and learn the reward function that will best
explain the observed (allegedly optimal) policy. This approach have some inherent ambiguities that were
recently partially or completely solved (see [7] and [8]). A formal gap between LfD and IRL was also
drawn in [9]. One of the main disadvantages of IRL for our concerns is that demonstrations are considered
as expert moves - excluding therefore suboptimal teachers. The consideration of such teachers was also
recently studied in a Bayesian framework (see [10]).

As stated earlier, most of the existing approach in LfD rely on the hypothesis that the dataset contains
some high-rewarding demonstrations. With a compliant-based exploration approach, we hope to loosen
that assumption and teach a reinforcement learner from (largely) suboptimal demonstrations.

1.3 Outline

To grasp ideas and intuitions about a compliant-based imitation learning method, we are going to start
with a fairly simple environment and an explicit task. A simple enough state space will allow us to better
understand how compliance in learning by demonstration could be used with a reinforcement learning
formulation. We expect to be able to generalize to more complex situations once the understanding on a
simple but generic model is mastered.

Hence, after defining a simple two dimensional grid-world state space with a simple action set, we will
quickly study how well different classical reinforcement learning algorithms performs on such a space.
We will then introduce new exploration policies, where the learner - beside searching for the optimal
policy - evaluates the optimality of its teacher. We will also focus on the relation between the learner
and the prior information that its mentor’s recommandations represent. Especially, we will study how
well a learner can overcome its mentor sub-optimality, focusing on largely suboptimal mentors.

Chapter 1 Semester project report 5



Chapter 2

Reinforcement Learning
The reinforcement learning approach being an essential aspect of this project, this chapter is intended

to review the foundations of the reinforcement learning theory and its practical implementations.

2.1 Formulation

2.1.1 Definitions
Reinforcement learning is a framework in which an agent (or a learner) learns its actions from inter-

action with its environment. The environment generates scalar values called rewards, that the agent is
seeking to maximize over time.

Let S denote the state space in which our agent evolves (the localization of a robot on a grid for
instance), and ∀s ∈ S we will define the action state A(s), describing all possible action that can be
taken by the agent at state s. When taking an action from a state st, the agent finds itself in a new state
st+1 where it receives a reward rt+1 ∈ R. The action taken is sampled over a probability distribution
from the joint space of state and action:

π : S ×A(s) → [0, 1]

(s, a) → π(s, a)
(2.1)

where π(s, a) is the probability of picking action a in state s. Such a distribution is called the agent’s
policy. The key goal of reinforcement learning is teaching an agent on how to change its policy to maximize
its reward on the long run.

The agent indeed seeks to maximize the expected return Rt mapping the reward sequence into R. A
commonly used expression for this value employs a discount factor γ ∈ [0, 1], allowing to make the agent’s
more sensible to rewards it will get in a close future:

Rt =

T∑
i=0

γirt+1+i (2.2)

This also allows to adapt this formulation to continuous tasks, where there are no terminal states and
the task goes on indefinitely (there are no episodes in the learning).

2.1.2 Markov decision process
To make the problem tractable, we ask for the state signal to comply with Markov’s property, hence

to be memory-less. For instance, we want to be able to write that, in a stochastic environment, ∀s′ ∈ S:

P (st+1 = s′ | at, st, . . . , a1, s1) = P (st+1 = s′ | st, at) (2.3)

Hence, every reinforcement learning problem can be represented by a Markov Decision Process, that
consists in a 5-tuple (S,A,P·(·, ·),R·(·), γ) where:

. S is the agent’s state space

. A is the agent’s action space

6



2.1. FORMULATION CHAPTER 2. REINFORCEMENT LEARNING

. ∀s, s′ ∈ S, ∀a ∈ A(s), Pa(s, s′) = P(st+1 = s′ | st = s, at = a) is the probability that action a in
state s will lead the agent to transitioning to state s′.

. ∀s, s′ ∈ S, ∀a ∈ A(s), Ra(s, s′) is the immediate reward perceived by the agent when transitioning
from state s to s′ when taking action a.

. γ is the discount factor.

A finite Markov decision process designates a MDP for which both the action and state space are
finite.

2.1.3 State and action value function
Most of the reinforcement learning algorithms are based on value function evaluation. A value function

is a function mapping the state space in R, estimating how good (in terms of expected future reward)
it is for the agent to be in a given space. More precisely, a value function V π(·) evaluates the expected
return of a state when following the policy π. V π(·) is called the state-value function.

∀s ∈ S, V π(s) = Eπ [Rt | st = s] (2.4)

The action-value function evaluates the value of taking a given action, and then following the policy
π:

∀s, a ∈ S ×A(s), Qπ(s, a) = Eπ [Rt | st = s, at = a] (2.5)

Both those functions satisfy particular recursive relationships known as the Bellman equations. It is
shown that (see [11]) we have the following results:

Bellman equations for Markov Decision Process

. Bellman equation for the state-value function: ∀s ∈ S

V π(s) =
∑
a∈A

π(s, a)
∑
s′

Pa(s, s′) [Ra(s, s′) + γV π(s′)] (2.6)

. Bellman equation for the action value function: ∀s, a ∈ S ×A(s):

Qπ(s, a) =
∑
s′

Pa(s, s′) [Ra(s, s′) + γV π(s′)] (2.7)

2.1.4 Optimal policies
The value functions define a partial ordering in the policy space. A policy π is therefore said to be

better than π′ (or π ≥ π′) if ∀s ∈ S, V π(s) ≥ V π(s′). We are looking for π∗ so that:

∀π, π∗ ≥ π (2.8)

It was showed that for finite MDPs, there is always at least one policy that is better our equal to all
others, and therefore is called the optimal policy π∗. As shown in [11], the state-value and action-value
function verify the Bellman optimality equations.

Bellman optimality equations

. Bellman optimality equation for the state-value function: ∀s ∈ S

V π(s) = max
a∈A(s)

π(s, a)
∑
s′

Pa(s, s′) [Ra(s, s′) + γV π(s′)] (2.9)

. Bellman optimality equation for the action value function: ∀s, a ∈ S ×A(s):

Qπ(s, a) =
∑
s′

Pa(s, s′)

[
Ra(s, s′) + max

a∈A(s′)
Q(s′, a′)

]
(2.10)

Chapter 2 Semester project report 7



2.2. DYNAMIC PROGRAMING CHAPTER 2. REINFORCEMENT LEARNING

Those relations are essential in understanding the solving algorithms that will be presented later.

There exists several ways of solving (i.e computing the optimal policy) a Markov Decision Process,
that can generically be separated in two categories: model-based and model-free methods.

2.2 Dynamic Programing

Dynamic programing is a mathematically well-developed theory. It requires the complete and accurate
model of the environment, making it a model-based method.

Dynamic programing methods aims at computing the optimal value function at every state of state
space. This could, of course, be done by solving the |S| equations of |S| unknowns that are the Bellman
equations for a given policy, and then evolve that policy toward a better one, based on the current value
function. Of course, this approach is computationally intractable for large state space and therefore needs
to be adapted. Nonetheless, it gives a first approach of the idea behind dynamic programing.

2.2.1 Generalized policy iteration
The generalized policy iteration methods rely on alternating two processes known as policy evaluation

and policy improvement.

. Policy evaluation deals with estimating the value function of a given policy π, without directly
solving the full system given by Bellman equations. The idea is actually pretty simple: use Bellman’s
equation as an update rule, the value function being a fixed point. After setting the tabled value
function to an initial value, the algorithm iterates by performing what is called full Bellman backups:

∀s ∈ S, V πk+1(s) =
∑
a∈S

π(s, a)
∑
s′

Pa(s, s′) [Ra(s, s′) + V πk (s′)] (2.11)

This algorithm converges under the same assumptions that guarantee the existence of the value
function, and has the generic name of iterative policy evaluation. They are many refining for
speeding up that process (reduced backups, prioritized sweeping) which we won’t address here.

. Policy improvement is a process that from a given policy value function, returns a better or equal
policy compared to the latter. The simplest way to do that is to consider, for every state s ∈ S,
every action-value functions:

Q(s, a) =
∑
s′

Pa(s, s′) [Ra(s, s′) + γV π(s′)] , a ∈ A(s) (2.12)

and then to build π′ to be greedy with respect to those actions-values:

π′(s) = argmax
a∈A(s)

{Q(s, a)} (2.13)

The policy improvement theorems then ensures that π′ ≥ π.

Hence, generalized policy improvement are a set of methods that iteratively combine those two sub-
methods to compute the optimal policy for a given MDP. Of course, one does not have to perform all
sweeps of value evaluation before improving the policy to converge toward an optima (indeed, many
times our sweeps won’t have any affect on the greedy policy). They are many ways to combine the
two (prioritized sweeping, asynchronous dynamic programing), but the most used and one of the most
quickest way to converge is to use the value iteration algorithm.

2.2.2 The value iteration algorithm
The value iteration algorithm takes the limit of the behavior we just described, and stops the value

evaluation procedure after only one state space sweep. It therefore performs a simple backup procedure:

∀s ∈ S, Vk+1(s) = max
a∈A

∑
s′

Pa(s, s′) [Ra(s, s′) + γV πk (s′)] (2.14)
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For any arbitrary V0, it is shown that Vk → V ∗ as k → ∞, under the same hypothesis that ensure
the existence of the optimal value function V ∗. As one can notice, it actually implements the Bellman
optimality conditions as an update rule !

2.3 Temporal differences methods

Temporal difference methods can be seen as a combination of dynamic programing and another kind
of learning called Monte Carlo methods, where the expected return are approximated via sampling. Like
dynamic programming, TD methods are said to bootstrap (meaning that they build their estimators
through already estimated values), but are model-free methods and learn from experience.

The justification, proof of convergences and literature and those models is pretty wide, hence we will
not cover them in this report. However, a full description of those methods can be found in [11].

2.3.1 On-policy method: SARSA
The SARSA algorithm is an on-policy control method, meaning that the algorithm updates the value

function and improves the current policy it is following. At state st, it chooses an action at from its
policy and follows it. After observing the reward rt+1 and the next state st+1, it again chooses an action
at+1 using a soft policy and performs a one-step backup:

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.15)

It therefore relies on a 5-tuple (st, at, rt+1, st+1, at+1) to perform the udpate, giving it the State Action
Reward State Action (SARSA) name.

The General Sarsa Algorithm

1. Initialize Q(s, a) arbitrarily ∀(s, a) ∈ S ×A(s)

2. Repeat for each episode:
Initialize s
Choose a ∈ A(s) using a soft policy derived from Q (typically ε-greedy)
Repeat for each step of the current episode:

Take a, observe r, s′
Choose a′ from s′ using policy derived from Q
Q(s, a)←− Q(s, a) + α

[
r + γQ(s′, a′)−Q(s, a)

]
a← a′, s← s′

until s ∈ S+.

The convergence properties of SARSA depend on the nature of the policy’s dependency on Q. Indeed,
SARSA converges with probability 1 to the optimal policy as long as all the sate and actions pairs are
visited an infinite number of time, and the policy converges in the limit to the greedy policy. This is
done, for instance, by turning the temperate of a softmax based policy to 0, or by having ε → 0 for
a ε-greedy policy. For SARSA to converge, we also as the learning rate to comply with the stochastic
approximation conditions: ∑

k

αk(a) = +∞ and
∑
k

αk(a)2 < +∞ (2.16)

where αk(a) is the learning rate for the kth visit of the pair (s, a).

2.3.2 Off-policy method: Q-learning
The Q-learning algorithm is an off-policy method who learns to directly approximate Q∗, independently

of the policy being followed. Its update rule is given by:

Q(st, at)← Q(st, at) + α

[
rt+1 + γ max

a∈A(st+1)
Q(st+1, a)−Q(st, at)

]
(2.17)
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The actual policy being followed still has an effect in that it determines which state-actions pairs are
visited and updated. However all that is required for convergence it that all pairs continue to be updated.

Q-Learning Algorithm

1. Initialize Q(s, a) arbitrarily ∀(s, a) ∈ S ×A(s)

2. Repeat for each episode:
Initialize s
Repeat for each step of the current episode:

Choose a ∈ A(s) using arbitrary policy
Take a, observe r, s′
Q(s, a)←− Q(s, a) + α

[
r + γmaxa′∈A(s′)Q(s′, a′)−Q(s, a)

]
s← s′

until s ∈ S+.

Along with this hypothesis and a slight variation in the usual stochastic approximation conditions, the
learned action value function by Q-learning has been shown to converge to Q∗ with probability 1.

In some cases, off-learning policies algorithms (like Q-learning) and on-policy ones (like SARSA) can
learn different optimal policies (see [11]). This is mainly due to the fact that Q-learning performs update
like if it was following a greedy policy - which it is not. That leads it to be less sensitive to a possible
behavioral policy failure.

2.3.3 Eligibility traces
In TD(0) approach (described in the latest section), we update the value function in the direction of

the one-step return:
∆Vt(st)

(1) = α
[
rt + γVt(st+1)− V(s− t)

]
(2.18)

The idea behind eligibility traces is to expand that update rule in order to steer the value fonction towards
the n-step return (or at least until a terminal state is reached):

∆Vt(st)
(n) = α [rt + γrt+1 + . . .+ γnVt(st+n)− Vt(st)]

= α
[
R

(n)
t − Vt(st)

] (2.19)

The backups can not only be done toward any n-step return, but toward any average of such returns,
as long as the corresponding weights sum-up to one. In this way, the TD(λ) algorithm can be understood
as a particular way of averaging n-steps returns. With λ < 1, the resulting backup is known as the
λ-return:

Rλt = (1− λ)

∞∑
n=1

λn−1R
(n)
t (2.20)

where the weights are fading with n. When the runs are episodic, we can write this return as:

Rλt = (1− λ)

T−t−1∑
n=1

λn−Rt(n) + λT−t−1R
(T )
t (2.21)
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Sarsa(λ) algorithm

1. Initialize Q(s, a) arbitrarily ∀(s, a) ∈ S ×A(s)

2. Repeat (for each episode):
Initialize s, a
Repeat for each step of the current episode:

Take action a, observe r, s′.
Choose a′ ∈ A(s′) using soft policy derived from Q
δ ←− r + γQ(s′, a′)−Q(s, a)
e(s, a)←− e(s, a) + 1
For all s, a:

Q(s, a)←− Q(s, a) + αδe(s, a)
e(s, a)←− γλe(s, a)

s← s′, a← a′

until s ∈ S+.

Such a formulation of eligibility traces is known as the forward view of TD(λ), and shows how eligibility
traces build the bridge between TD(0) methods and Monte-Carlo one. It is not implementable as is since
it is non-causal. There exist a more mechanistic view, equivalent to the forward view (see [11]), known
as the backward-view. It gives birth to causal version of the TD(λ) method. We give as an example the
pseudo-code for the SARSA(λ) algorithm above. Its Q-learning equivalent can be found in [11]. In the
following, we will use the variant of eligibility traces for Q-learning known as Watkins Q-learning.

2.4 Grid-world examples

We hereinafter describe two grid-world state spaces, on which we will apply the learning methods
derived in the latest section. Such examples are trivial and are displayed here simply to show convergence
and behavior of the different algorithms.

We will consider the two following state spaces:

Figure 2.1: The free_grid state space Figure 2.2: The bar_grid state space

2.4.1 Dynamic Programing solving
Let us run the DP algorithm on such grid worlds. We will consider a stochastic environnement, with

the transition probability:

Pas,s′ =

{
0.9 if s′ = a(s)

0.1 otherwise
(2.22)
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Using a stochastic dynamic, is a first step in designing an environment closer to reality. Also, this allows
to provide a simple example (like the one considered) we non-trivial solutions.

Running the value iteration algorithm (assuming we now the environment model), we obtain the
following policies and learning curves. The stopping criterion adresses the maximum absolute change
brought to the value function as the sweeping goes through the state space:

If max
s∈S
|Vk+1(s)− Vk| < δ then stop (2.23)

In practice, δ is defined to be 0.1% of the first state-value function update.

Figure 2.3: The free_grid learned optimal
policy

Figure 2.4: The bar_grid learned optimal
policy

Figure 2.5: The free_grid value iteration
learning curve

Figure 2.6: The bar_grid value iteration
learning curve

One can notice that for the bar_grid environment, the agent undergoes a longer trajectory than
necessary, at the left of the obstacle. This is because of the stochastic nature of the environment, causing
the agent to learn to take its distance from the obstacle in order not to accidentally hit it (and then
receive a negative reward).The learned policy are indeed optimal, and the next algorithms (SARSA and
Q-learning) will try to reproduce them without a model for the environment.

2.4.2 SARSA solving
We display here the learning curves for the free_grid state space using SARSA. The algorithm manages

to learn the optimal policy and the right action-value functions. We use optimistic initialization to
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encourage exploration, and Gibbs sampling for following a soft-policy: ∀(s, a) ∈ S ×A(s)

π(s, a) =
eQ(s,a)/τ∑

a′∈A(s) e
Q(s,a′)/τ

(2.24)

We will tune the distribution’s temperature τ to zero, in order to converge toward the greedy policy w.r.t
the learned action-value function.

Following this strategy and tuning our learning rate to comply with the stochastic approximation
conditions, we obtain the following learning curves. Again, our stopping criterion addresses the maxi-
mum change in the acton-value function over all the trajectories of a mini-batch (collection of sample
trajectories).

Figure 2.7: Learning curve for SARSA on
free_grid

Figure 2.8: Averaged rewards over mini-
batch for SARSA on free_grid

Figure 2.9: Learning curve for Q-learning
on bar_grid

Figure 2.10: Averaged rewards over mini-
batch for Q-learning on bar_grid

More precisely, in this example, we use the following dynamics for the temperature and the learning
rate:

τt = 0.995 · τt−1 (2.25)
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and, ∀s ∈ S, a ∈ A(s):

αt(s, a) =
α0(s, a)

(k(s, a) + 1)0.55
(2.26)

where k(s, a) denotes the number of time the action-state (s, a) was chosen during the learning. Hence,
we comply with the greedy-in-limit as well as the stochastic approximation conditions.

2.4.3 Q-learning solving
Figures (2.9) and (2.10) display the learning curves for the bar_grid state space using Q-learning.

Again, the algorithm manages to learn the optimal policy and the right action-value functions. We use
Gibbs sampling for the behavior policy, without any tuning for the temperature (the behavior policy
doesn’t need to be greedy in limit).
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Chapter 3

Compliant Reinforcement Learning
With our approach, we wish to tackle two topics: on one hand, we wish to develop an imitation based
learning framework that accelerates the learning process. Also, we wish to apply an adaptive compliance
based behavior so that an agent can overcome an arbitrarily suboptimal teacher.

3.1 Principle

We start by making a fairly strong hypothesis to simplify our approach. In the following chapters,
we will consider that a mentor demonstration provides one recommended action for every state - which
is the equivalent of providing one deterministic policy. This somehow out-scopes the case of unique
demonstration, but can be understood as a combination of multiple demonstrations.
Hence, we will consider that a teacher’s demonstration is a mapping between the state space S of the
learner and its action set A(s), ∀s ∈ S, denoted πm:

πm : S → A
s→ am(s)

(3.1)

where am(s) is the recommended action of the mentor at state s.
Such a hypothesis isn’t trivial, and will be discussed later in this report. The main reason it is considered
is that it enables to treat the whole state space in the same way - without having to distinguish regions
that are provided with demonstrations and regions which are not.

As discussed earlier in this report, our goal is to mimic the shifting compliance a child can have with
respect to its teacher when learning a new skill. Because this implies making choices as to wether follow a
recommended action or sample elsewhere in the action space, it is clear that only the action selection
should be impacted by the presence of the mentor.

We will now consider an action selection process based on the teacher’s recommandation. We introduce
a parameter p, that can be understood as a confidence measure in the teacher. The action selection
process we chose to follow can be understood as a p-greedy action selection with respect to the teacher
recommandation and is defined as:

∀s ∈ S, π(s) =

{
am with probability p
a ∈ A(s)\am with probability (1− p)

(3.2)

The learner therefore has two possibilities: follow the teacher with probability p, or take its own action,
with probability (1 − p). This motivates to call p a confidence measure: the greater p is, the more the
learner will trust the teacher and follow its recommandation. In the case where the learner decides to
take its own action, it samples in its state space through Gibbs softmax sampling, thanks to its current
action-value estimates.
The updates will follow the SARSA algorithm, and the usual TD(0) updates: ∀s ∈ S, a ∈ A(s)

Q(s, a)← Q(s, a) + α [r +Q(s′, a′)−Q(s, a)] (3.3)

which are indeed not impacted by the presence of a mentor. Therefore, under the very simple conditions
for SARSA to converge to a locally optimal policy (that is, among others, that the exploratory policy is
greedy in limit), our algorithms will converge too.
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The purpose of sections (3.4) and (3.5) is to provide the confidence p with different dynamics through
time and evaluate the corresponding performances.

3.2 Experimental MDP

To test the effectiveness of the methods we propose, we decided to provide a model that would stay
fixed all along the experiments. We will use it in order to compare our different algorithms.

We designed the state space displayed in figure (3.1). In this environment, all black cells are obstacles.
They give out highly negative rewards (r = −10). Whenever an agent take the action to enter such a
cell, it immediately perceives the negative reward but stays in its current cell. The only positive reward
is at the middle of the grid (r = 10), the only terminal state. Any episode starts at one of the corner
of the grid (green cells), and every step spent on a non-terminal cell gives out a small negative reward
(r = −0.1). The transitions are stochastic, with the transition probability model:

s′ =

{
a(s) with proba 0.95

s′′ 6= a(s) otherwise, uniformly sampled
(3.4)

This state space is big enough for the usual algorithms to learn rather slowly, even if they are greatly
enhanced by the use of eligibility traces. Also, all tested algorithms (SARSA, Q-learning, SARSA(λ) and
Watkins Q(λ)), because they do not perform infinite exploitation / exploration moves, renders slightly
suboptimal policies.

Figure 3.1: The maze_grid state space Figure 3.2: Optimal policy (value iteration)

If we go back at one of our motivating example (robot grasping an object), we could easily draw parallels
between such an example and the grid environment we just presented. Indeed, we could imagine a teacher
providing a demonstration that borders the obstacle. Because the learner suffers a (slightly) stochastic
dynamic, this would indeed be a largely suboptimal solution, since large negative rewards will be likely
to occur during the learning. However, the demonstration contains a fairly important information, that
is the direction to follow to reach the center of the grid.

Figure (3.3) displays the convergence (expressed as average reward on minibatch) for Q-learning,
Sarsa(λ), Sarsa(0) and Watkins Q(λ). By average reward on minibatch, we mean that at every iter-
ation, the reward is average around a given number of trajectories, following the same exploratory policy.
This allows to reduce the stochasticity of trajectories while learning and give a smoother estimation of
how well the algorithm is learning. As a way of comparing them to the optimal and random policies, we
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Figure 3.3: Average rewards on minibatch for learned policies, optimal policy and random policy.

also plot the average rewards perceived by the latest along many trajectories.
For all the learning algorithms tested, we used optimistic action-value initialisation to promote explo-
ration. This explains why many negative rewards are perceived in the beginning.

3.3 Generating mentors

Figure 3.4: Generating a suboptimal mentor from a SARSA learner

Besides giving us an idea on how generic reinforcement learning algorithms performs on our sandbox
MDP, those different reinforcement learning methods enable us to generate mentors of varying sub-optimal
levels.

If we consider a SARSA learner (for instance), we can at any time of its learning generate a deterministic
version of the current exploratory policy. This is done by taking its greedy version with respect to its
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current Q-values estimates. Hence ∀s ∈ S:

πm(s) = argmax
a∈A(s)

{Q(s, a)} (3.5)

Such a process is displayed in figure (3.4). Because the mentor’s policy is deterministic, it is slightly
better than the learner it was generated from, but still is clearly suboptimal. This method hence enables
us to generate mentor of different optimality levels.

3.4 Naive learners

3.4.1 Constant compliance learner
In the context of the action-selection process described in (3.2), we decided to first implement a fairly

naive method. It consists in following the teacher’s recommandation with a constant compliance term
p: the learner complies with the teacher with probability p, and decide to choose its own action (that
could include am) with probability 1 − p. This is a slight digression from (3.2), that is made here to
enable a learner to reach optimality. The softmax sampling used when discarding a recommandation is
tuned by a decaying temperature coefficient, making it greedy in limit.

The figures (3.5) and (3.6) display the learning curves obtained when fed with, respectively, the optimal
policy for the MDP and a slightly suboptimal one.

Figure 3.5: Constant compliance learning, p = 0.9,
with the optimal mentor

Figure 3.6: Constant compliance learning, p = 0.9,
with a slightly suboptimal mentor

Figure (3.5) shows that from its exploration, the learner is able to quickly learn his way thanks to the
optimal mentor. As expected, it eventually follows the mentor’s action, wether it complies or not, since
the recommended action holds the best action-values. On the other hand, as shown in figure (3.6), the
high confidence the learner initially have in its mentor prevents it from reaching optimal performance,
and the policy its renders actually mimic its mentor suboptimal one. Still, one could expect the learned
policy to be slightly better than its suboptimal teacher’s one, even if not optimal. However, achieving
this comes with a lot of effort in the tuning of p and of the softmax distribution temperature decrease
coefficient.

This remark actually pinpoints a major downside of this method, that is the need of fine tuning of the
parameter p. But obviously, there is even a bigger downside, which becomes a major game killer when
dealing with largely suboptimal mentors. Indeed, some mentors can be suboptimal enough to only show
a good direction of exploitation, but not be able to reach the target. Figure (3.7) displays such a policy,
where the mentor’s policy creates loops and does not always leads to the positive reward.
Applying the latest method with such a teacher is fatal for the learning, as the learner discovers that
following the mentor’s action yields largely negative rewards, but is not able to bypass them as it keeps
a constant confidence in its teacher. This leads the learner to build up low Q-values in the directions
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Figure 3.7: An exemple of suboptimal mentor policy that doesn’t always lead to the positive reward

recommended by the mentor, and to try to follow an opposite path. This is highly counter-productive
since the mentor still gives the right exploration direction.

3.4.2 Vanishing compliance learner
One of the downside of the constant compliance approach is that the exploratory behavior is always

biased by the mentor’s recommandation. This breaks the need of this policy to be greedy in limit (which
is a specification for SARSA algorithm to converge). In the case of a sub-obptimal mentor, this means
that the optimal behavior could never be reached.

We now decide to comply with the need to be greedy in limit. Therefore, we decide to set p to be
constantly decreasing along the learning :

pt+1 = βpt (3.6)

with β < 1.

The action-selection is therefore biased by the mentor’s recommandation in the beginning of the learning
only, and slowly decides to take its own choices, based on its current Q-values estimates. This approach
sounds more promising as the learner is more likely to quickly discover the location of high rewards
(following the teacher policy with p close to 1), and will then makes it own exploration along those
trajectory, to end up in a setting where the teacher’s actions are now longer considered.

Figures (3.8) and (3.9) display the result on two sub-optimal policies, that were derived from the Q-
values learned at a given moment (denoted through a red square) in a learning process. They show that
with this approach, while the learner is compliant with the teacher, it steadily increases its accumulated
reward thanks to its exploratory actions. However, it then comes to a plateau (or even an undershoot)
when the guidance by the teacher becomes too weak as p reaches a critical level. The learner then mostly
relies on its exploratory actions (which volatility are guided by its temperature coefficient) to explore
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Figure 3.8: Vanishing compliance, β = 0.99 Figure 3.9: Vanishing compliance, β = 0.97

new regions of the state space. Once it has somehow learnt the action value function related to this part
of its state space, and as its temperature goes down, the learner’s accumulated reward goes up until it
reaches the level of the optimal policy.

If this approach seems to work relatively well, there are still some critical downsides to it. First of all,
a lot of tuning is required in order to find the hyper-parameters (p0, β, temperature evolution, ..) that
lead to a fast learning. Also, there is an undershoot in the learning that seems to slow it down, due to
the exploring phase that happens when p becomes too low. Such exploration could be avoided or reduced
if the learner is able to figure out quickly that indeed, the mentor was right in its recommandation.

This last remark is a clear motivation to search for better behaving confidence dynamics. Indeed, why
automatically reject a recommandation (which is what the vanishing compliance does in the end of its
learning) when we have all the information needed to state that this recommandation is a good one ?

3.5 Adaptative compliance learners

It makes sense to somehow learn the optimal value of the confidence parameter p, so that we don’t
have to manually tune its evolution, and so that it can store how right the teacher recommandations
are. Ideally, we would like p to be near 0 when the teacher provide a suboptimal action and 1 when the
recommended action is sampled from the optimal policy. The underlying problem is therefore to infer
the optimality of the teacher in different regions of the state space.

We hereinafter describe two methods which attempt to do so. Their respective experimental results as
well as further discussion will be found in chapter (4).

3.5.1 Implicit β-compliance
Let us define the confidence term p locally for every state of the state space. For each s ∈ S, p(s) is given

a Beta prior: p(s) ∼ β(α(s), β(s)) and represents the initial trust we have in a mentor’s recommandation
at state s. The initial values α0 and β0 define the initial prior belief we have over p (for instance, α = 0.5
and β = 0.055 define a prior belief that the teacher is most probably right).

As in before, we perform a p-greedy policy with respect to the teacher recommandation:

∀s ∈ S, πp(s) =

{
am with probability p(s)
a ∈ A(s)\am with probability (1− p(s))

(3.7)
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Figure 3.10: The Beta distribution for several values of (α, β)

The following describe how we wish to learn the value of p(s), ∀s ∈ S. Based on the 5-tuple (s, a, r, s′, a′)
obtained thanks to the action selection process we just described, we compute at every step the following
temporal difference value:

δt = r + γQ(s′, a′)−Q(s, am) (3.8)

which compares, in average, the advantage (our drawback) of following the state-action pair (s, a) rather
than the one indicated by the teacher, according to the current Q-values estimates.

We then apply the following update rule to p(s):

αt(s)← αt(s) + 1a=amδtεt

βt(s)← βt(s) + 1a6=amδtεt
(3.9)

The intuition behind this update rule is simple: if we see that the expected return for the mentor action
increases (resp. decreases), then we increase (resp. decrease) α which results in a shift of p toward a
larger (resp. smaller) confidence. A similar reasoning holds for the β term. εt is the update rule’s learning
rate, which value and dynamic will be discussed later.

3.5.2 Explicit compliance
We consider here a somewhat similar approach, where our listen versus discard exploration policy is

computed according to the current estimated values of the actions ’listen’ and ’discard’. Let us introduce
the action spaces:

∀s ∈ S, Ac(s) = {′listen′, ′discard′} (3.10)

to which we assign the action values Qc(·, l) and Qc(·, d) (where ′l′ denotes the action of listening and ′d′
the action of discarding the teacher recommendation).

The exploration is done by computing a soft policy derived from {Qc(s, l), Qc(s, d)} for all s ∈ S. We
do this using a Gibbs softmax distribution, which yields:

∀s ∈ S, πc(s) =


′l′ with probability p = σ

(
Qc(s, l)−Qc(s, d)

τ

)
′d′ with probability 1− p

(3.11)

where σ(·) is the logistic sigmoid and τ is a temperate coefficient decreasing to 0 (greedy policy in limit).
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After each SARSA update, we also make the following update:{
Qc(s, l)← βQc(s, l) + (1− β)Q(s, am)

Qc(s, d) = βQc(s, d) + (1− β) max
a 6=am

Q(s, a) (3.12)

with β > 0 the update rule’s learning rate.

We can introduce some prior confidence in the teacher by setting, ∀s ∈ S:

Q0
c(s, l)−Q0

c(s, d) = τ log{ p

1− p
} (3.13)

where p is the retained probability of initially choosing to listen to the teacher.
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Chapter 4

Results
The following sections procide some practical considerations for the implicit β-compliance and explicit

compliance methods, and discuss the experimental results we obtained.

4.1 Implicit β-compliance

4.1.1 Practical considerations
One of the main specification of the SARSA learning paradigm is that the exploration policy must be

greedy in limit so that a fixed point can emerge (hopefully the set of Q-values related to the optimal
policy). In an actor-critic approach, the usual way to bring the critic term in a stationary regime is to
modify its learning rate to take the probability of taking an action into account (see [11]).
This is the approach we chose in order to pick the learning rate εt of the update rule (3.9), which now
becomes:

αt(s)← αt(s) + 1a=amγδt(1− p(s))
βt(s)← βt(s) + 1a 6=amγδtp(s)

(4.1)

with γ > 0. This update rule can still be simplified, by approximating p by its mean value, which gives
the update rule that we applied in practice:

αt(s)← αt(s) + 1a=am
γβt(s)

αt(s) + βt(s)
δt

βt(s)← βt(s) + 1a 6=am
γαt(s)

αt(s) + βt(s)
δt

(4.2)

This ensures us that we will direct the update toward a fixed point, and end up with a greedy exploratory
policy (in limit).

In this method, p is given a Beta prior distribution. To perform the action selection, we would
therefore need to sample p(s) from its current distribution, and then sample a Bernoulli random variable
of parameter p(s). Assuming that the Beta distribution is sharply peaked around its mean (which we
will guarantee by choosing an appropriate prior and learning rate γ). Then p(s) can be approximated by

its mean value E [p(s)] =
α(s)

α(s) + β(s)
. We therefore only need to sample a Bernoulli random variable of

parameter E [p(s)] at every state to complete the action selection process.

The tuning that needs to be done is therefore left to γ, the prior and the temperature. In this
framework, tuning is made much simpler and one only has to check that the updates are of the same
order of magnitude with the prior (in order for the posterior distribution to adapt to observations, but
also to retain the memory of the prior).

4.1.2 Results
Figures (4.1) and (4.2) show the learning curves for an agent using the β-compliance, with two different

suboptimal teachers (generated from a SARSA learner, indicated by the red square).
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Figure 4.1: β-implicit compliance learning curve Figure 4.2: β-implicit compliance learning curve

The first remark we can make is that by learning the confidence, we were able to avoid the undershoot
that we observed for the vanishing compliance method (see figures (3.8) and (3.9)). This results in a
faster learning and better behaving learning curves. The different methods will be further compared in
(4.3).

4.1.3 Discussion
It would be interesting to see what is the posterior distribution of the {p(s)}s∈S . We expect our final

policy to be greedy, and hence the posterior distribution of the compliance term to be sharply peaked
around 0 or 1, with proportion given by how optimal the mentor is. Figures (4.3) and (4.4) display the
histogram of the repartition of the E [p(s)] for s ∈ S (again, we approximate the Beta distribution by its
mean to have an understandable visualization), for two suboptimal mentors. As expected, most of the
means are either close to 0 and 1, and they are more means close to 0 (poor confidence) when using the
second mentor - that is far worse than the first.

Figure 4.3: Histogram representation of the posterior
means for a suboptimal teacher (first mentor)

Figure 4.4: Histogram representation of the posterior
means for a a suboptimal teacher (second mentor)

Also, to better understand how this algorithm works, it would be interesting to visualize the areas where
the learner rejects or listen to its mentor. We expect the learner to discard the mentor’s recommandations
where those are wrong, and to trust its mentor where it is right (compared to the actions of an optimal
policy). Figures (4.5) and (4.6) display, for two different mentors (the same two ones as we just used), the
mentor’s policy and the heat-map of the confidence the learner as acquired with respect to its teacher’s
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recommandation at the end of the learning. Red arrows indicate a confidence close to 0, when green
arrows are for confidence close to 1.

Figure 4.5: Learnt confidence: green arrows show
near 1 posterior mean, red arrows near 0

Figure 4.6: Learnt confidence: green arrows show
near 1 posterior mean, red arrows near 0

The first observation one can make is that most of the suboptimal mentor actions are indeed well
classified by the learner (red arrows). Also, most of the actions leading to such actions are also classified
as poor recommandations, because they have a tendency of leading to deadlocks, or suboptimal actions.

4.2 Explicit compliance

4.2.1 Practical considerations
The implementation of this method is rather straight forward and contains no major difficulties. How-

ever, some hyper-parameters have to be tuned, like the two temperatures for action-selection (since we
are updating two different MDP action-value tables) as well as their respected dynamics (multiplicative
factor) and the learning rate of the update rule (3.12).

In practice, this tuning is rather easy to perform, as long as one make sure that the initial values for
Qc(s, l) and Qc(s, d) (s ∈ S) don’t absorb the observations but also retain some prior knowledge along
the learning (the learning rate β has to be related to those initial values in some way).

4.2.2 Results
Figures (4.7) and (4.8) show the learning curves for an agent using the action-value compliant-based

method, with two different suboptimal teachers. As for the β-implicit method, we are able to reduce
or even suppress the undershoot that the vanishing compliance method displayed, and to obtain fast
convergence.

4.2.3 Discussion
Similar plots of posterior result as for the β-implicit method can now be drawn. Figures (4.9) and

(4.10) display the histograms distributions for the action ’listen’ and ’discard’ (computed by the sigmoid
value at end temperature). Figures (4.11) and (4.12) show the learnt decisions over the action-state space
(the optimal policy is plotted, with red arrows for discarded actions and green for followed actions).
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Figure 4.7: Explicit compliance learning curve Figure 4.8: Explicit compliance learning curve

Figure 4.9: Histogram representation of the
posterior decisions for a suboptimal teacher
(first mentor)

Figure 4.10: Histogram representation of the
posterior decisions for a suboptimal teacher
(second mentor)

Figure 4.11: Learnt decisions: green arrows show
listening, red arrows discarding

Figure 4.12: Learnt decisions: green arrows show
listening, red arrows discarding
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Again, one can see that most wrong recommandations are well-classified. However, this method as
a tendency to classify an action leading to a suboptimal sequence (in the mentor’s policy) as a poor
action. This has for consequence that the learner will always try to go round the mentor’s suboptimal
recommandation, sometime by making some undesired detours.

4.3 Performance comparaison

We hereinafter focus on comparing the last three methods (vanishing compliance, implicit β-compliance
and explicit compliance) between themselves and with classical reinforcement learning algorithms.

4.3.1 Compliant learners
Let us now compare the different compliant learners between them. Figures (4.13) and (4.14) display

the learning curves derived in the previous section altogether. If the β-implicit and the explicit compliance
methods seem to behave better than the vanishing learner, it seems that the speed of convergence of all
three algorithms tends to equalize as the teacher sub-optimality grows. As explained shortly after, this
behavior is confirmed by figures (4.15) and (4.16).

Figure 4.13: Learning curves for a first teacher Figure 4.14: Learning curve for a second teacher

We now derive some more precise metrics to assess the performances of our different algorithms. We
will focus on two different metrics:

· Time to convergence: as its name indicates, we here measure how many iterations it took for
the tested algorithm to reach convergence. We define convergence as a threshold value over which
the accumulated reward on one episode will stay superior to. This threshold is set to be close to
the optimal policy accumulated reward on one episode (99% of its value).

· Accumulated reward ratio: this metric measure how the learner behaves until convergence. It
computes the ratio between the reward accumulated by the learner until convergence (see above)
and the reward the optimal policy would have accumulated over the same period of time. Therefore,
the quickest a learning curves goes near the optimal reward, the better this metric would be.

In figures (4.15) and (4.16), different teachers are being tested based on their optimality level. This scalar
measure of optimality is computed from a linear scaling between the random policy and the optimal policy
mean expected return on one run. As one can see, the time to convergence metric seems to equalize for
all methods as the optimality of the teacher decreases. However, the accumulated reward ratio is always
better for the two adaptive methods - traducing the absence of the undershoot and better behaving
methods. Hence, if our adaptive algorithms can’t always speed up the learning (compared to a naive
compliant learner), they provide better behaving agents.
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Figure 4.15: Time to convergence metric Figure 4.16: Reward ratio to convergence metric

4.3.2 Classical learners
As reminded in the beginning of this document, one of the goals of learning to demonstration is to

speed up the learning. The goal of this section is to compare the behavior of the compliant-based learners
we developed with some more classical reinforcement learning.

Figures (4.17) and (4.18) display the learning curves of the compliant learner opposed with, respectively,
TD(0) learners and TD(λ) learners. As one can see, our algorithms performs way better than TD(0)
learners, even with largely suboptimal teachers. However, they performed as well or even slightly worse
than TD(λ) learners. This phenomenon is mostly due to the fact the behind its action selection, our
learners update their Q-values thanks to SARSA updates (on-policy). Generalizing to an off-policy
update, and eventually by making use of eligibility traces will most likely improve the learning speed and
beat TD(λ) learners.

Figure 4.17: Method comparaison (teacher optimal-
ity: 50%)

Figure 4.18: Method comparaison (teacher optimal-
ity: 75%)

Figures (4.19) and (4.20) display the previously define metric values for both compliant learners and
some different classical reinforcement learning algorithms. On (4.19), we only display the result for
eligibility traces algorithms, since SARSA and Q-learning have much higher convergence times than the
other considered algorithms.
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Figure 4.19: Time to convergence metric: comparai-
son with classical RL algorithms

Figure 4.20: Reward ratio to convergence metric:
comparaison with classical RL algorithms

Those figures confirm the fact that our compliant based algorithms have comparable performance than
eligibility traces based reinforcement learning algorithms. This is rather pleasing, knowing that our update
are tailored by TD(0) updates. When compared to TD(0) learners (like SARSA or Q-learning), it is clear
that our compliant-based learners perform equally or better (depending on the metric). This is reassuring,
since they have a significant advantage: the prior knowledge given by the mentor’s demonstration.

4.4 Improvements

We’ve discussed earlier how the final result of our learning algorithms depended on the mentor. Be-
cause we are learning on-policy, the mentor sub-optimalities have a tendency to repeal the learner from
suboptimal zones, dedicating a consequent amount of time to exploration.

Hence, most of the time, the learner overcomes its mentor sub-optimality only by avoiding regions where
this one is sub-optimal, instead of deciding to explore those regions and fixing the mentor sub-optimality.
This could be avoided by using off-policy learning.

Figure 4.21: Learning curves for both off an on-policy
compliance-implicit learner

Figure 4.22: Learning curves for both off an on-policy
compliance-explicit learner

The effect of learning off-policy are only noticeable when applied to largely suboptimal mentors - or
more precisely, to mentors giving poor recommandations in large regions of the state space. Figures
(4.21) and (4.22) display the learning curves of off-policy versions of our adaptative compliance methods
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for such a sub-optimal teacher, and compares then to their on-policy version. If it is clear that the general
behavior of the learner is improved (most of the learning is done much quicker), the time to convergence
is also slightly improved . If there is some incompressible time needed for exploring around the teacher’s
sub-optimalities, this method seems to find quicker an optimal way of doing so.

As previously stated, the benefit of compliant off-policy learning is only noticeable for some special
kind of mentor sub-optimalities. It is therefore a fairly good approach to treat systematically sub-
optimal teachers, regardless of their level optimality. However, there is a certain level of sub-optimality
(for instance, near random mentor) for which this method will tend to perform equally to the on-policy
compliant learning. Again, most of the advantages of using off-policy learning in this context is that the
correspoding learner will try to fix the mentor’s action in some suboptimal subspace region, instead of
trying to bypass it.
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Chapter 5

Conclusion

5.1 Outline

We presented in this report a few attempts at generating compliant exploratory policies with respect
to a generalized teacher demonstration. We first introduced a naive method, called vanishing compliance,
where a learner first follows its mentors recommandation before slightly taking its own decision, to
eventually exploit only its Q-values to move along its state space. We then introduced two adaptative
compliance methods, learning a measure of their mentor optimality. One provides a prior to a point
based confidence measure (β-implicit), while the other drives the exploration based on the learnt values
of listening or discarding the teacher (explicit compliance).

We then evaluated those methods, focusing on their convergence speed as well as on their general
behavior. When it comes to convergence speed, adaptative learners tend to perform well better than
the naive learner, provided a well-behaving teacher. As the mentor’s optimality level decreases, the
performance of those methods tends to equalize.
However, adaptative methods constantly displays better behavior (in terms of average rewards in a
reinforcement learning vocabulary) than the naive one, which can be of consequent advantage for real
world implementations. The following table sums-up the advantages and drawbacks of the three different
methods displayed in this report.

Method Advantages Drawbacks

Vanishing Compliance
Easy to implement Delicate tuning
Systematic Learning curve undershoots

No inference over the mentor’s
optimality level

β-implicit compliance
Intuitive tuning Harder to implement
Infers the mentor’s optimality
level

Prior must be well defined

Quickly reaches suboptimal
level

Convergence rates are highly
impacted by the quality of the
mentor

Explicit compliance
Easy to implement Convergence rates are highly

impacted by the quality of the
mentor

Infers the mentor’s optimality
level
Quickly reaches suboptimal
level

Using rather basic reinforcement learning updates (SARSA), all three of our methods compete with
the performances of more sophisticated algorithms (eligibility traces for instance), even with teachers
of questionable optimality levels (in our experiment, nearly-optimal teachers have optimality levels ap-
proaching 100% by only a few percentage). What’s more, they clearly outperform the algorithms they
rely on when those ones are implemented without demonstrations. However, some consequent work is
left to be done in order to be able to generalize those algorithms to more complicated environments or
to weaker hypothesis.
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5.2 Applicability

Because the final goal of this approach concerns the application to real world problems, the question
of applicability arises. Since our approach only modifies a rather small aspect of reinforcement learning,
the question of its applicability actually reports to the question of applicability of reinforcement learning
itself. Because of the greediness of reinforcement learning (be it computationally or in terms of the
quantity of data it needs to learn), this has been quite an important topic over the last years, with some
interesting results (see [12] or [13]). If reinforcement learning has already been implemented on simple
robots, complex robotics tasks that will motivate the use of our approach are still not solvable (at least
in a reasonable time) with reinforcement learning.

Hence, if an attempt shows to be particularly successful, we believe that our approach could show
some interesting results - since it aims at speeding up learning. Also, because our approach only deals
with the steering of the exploratory policy toward a certain direction, convergence proofs still hold as
long as the exploratory policy is greedy in limit. However, this last assumption is arguable for real world
implementations, since no proof of convergence exists for continuous reinforcement learning.

5.3 Future work

There is still a consequent work to be done to be able to consider applying our approach to real human
demonstrations. We hereinafter state the ones that seems the most important to reach an applicable level
of performance and comply with real world constraints.

• Evaluate the outcome of the methods for sparse demonstrations. Indeed, we considered in this
work that a demonstration consisted of the observation of deterministic policy over the whole state
space. Generalizing our approach to sparser model of demonstration seems like an essential step.

• Evaluating the effect of using eligibility traces in our learning could also be important in an attempt
to increase the convergence rate.

• The question of learning the prior (for the β-implicit method) or the initialization (for the explicit
method) could also be of importance. Indeed, choosing a coherent prior for a given teacher highly
impacts the rate of convergence.
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