
Semester Project Master-2

Classification of human vs hard contacts
through force sensing

Spring semester : LASA-EPFL

Author:
Hédi Fendri

Supervisors:
Mahdi Khoramshahi
Prof.Aude Billard

December 7, 2020

Contents

1 Introduction and problem statement 3

2 Backgrounds and related works 4
2.1 Dynamic system model for robotic manipulations . 4
2.2 Impedance control . 4
2.3 Parameter estimation using MIT rule . 5

2.3.1 General Adaptive control method . 5
2.3.2 MIT rule . 6

3 Proposed method 7
3.1 Modeling Environment . 8

3.1.1 Passive environment . 8
3.1.2 Active environment . 8
3.1.3 Pure force model . 9

3.2 Online parameter estimation . 9
3.3 Passive/active classification . 10

3.3.1 From error estimation to belief-updates . 10
3.3.1.1 MIT Rule approach . 10
3.3.1.2 Model-error based approach . 10

3.3.2 Winner-take-all algorithm . 11
3.3.3 Computing beliefs . 11

3.4 Hyperparameter optimization . 12
3.4.1 Error metric . 12
3.4.2 Simple Grid-search . 12
3.4.3 Iterative hyperparameter tuning . 13
3.4.4 Nested Grid-search . 13
3.4.5 Hyperparameter tuning results . 14

4 Simulation 15
4.1 Implementation . 15
4.2 Simulation Result . 16

4.2.1 Model-error based approach . 17
4.2.2 MIT Rule approach . 18

5 Robotic experiments 19
5.1 Data collection . 19
5.2 Results on robot data . 20

6 Using adaptation as feedback 21

7 Conclusion 24

Chapter 1: Introduction and problem statement

1 Introduction and problem statement

Advancement in the field of robotics has transformed the industrial sector. The annual world supply of indus-
trial robots is increasing significantly as shown in Figure 1.1. Traditionally, robots were mainly used in large
production lines in the industry, however, more robots appear in smaller production lines, social and service
applications. In such domains, roboticists aim at physical cooperation and collaboration between humans and
robots. Beside having a seamless and effective interaction, safety becomes the most significant factor in order
to ensure that human beings will not be harmed by their robot partners.

Figure 1.1: Annual worldwide supply of industrial robots between 2009- 2018 and projection between
2018-2021 [1].

For an effective and seamless physical interaction, robots should reduce fatigue and stress, increase human
capabilities in terms of force, speed, and precision, and improve in general the quality of life. On the other
hand, a human can bring experience, global knowledge, and understanding of the correct execution of tasks.
The challenge for robots in this type of application is to understand the intention of the human partners and
react accordingly. This communication needs to be in an intuitive way without needing to learn technical details
for multiple hours. For instance, the robot adapts its motion according to the interaction forces of the human
user. This approach introduces challenges in scenarios when the robot expect interaction forces also from hard
surfaces in the environment. Therefore, it is crucial for robot to distinguish between interaction forces of humans
and hard surfaces.

In this work, we consider robotic tasks involving contacts with both hard surfaces and humans. For example,
consider polishing a surface or drilling an object. The most common approach to solve such a problem is to rely
on force-sensing while approaching the surface. The contact is recognized when the sensed forces are passed
beyond a threshold. Therefore, the robot begins to exert the desired forces. However, considering cluttered and
uncertain environments, including humans, introduce new challenges for the safety of such robotic task. For
example, the robot might collide with a human and detects him/her as the expected hard contact. Therefore,
following the same strategy, the robots harm the human applying its desired forces. An effective strategy would
be to distinguish between hard contact surfaces and accidental contacts with humans. We formulate this as a
classification problem in this project.

We start first with a quick overview for related works from the literature in the section 2. We present our
method in section 3 followed by the results on simulation and on real robot data in sections 4 and 5. We will
also show how can we integrate our proposed method as a feedback to the control loop of the robot in section 6.
We finish with conclusion and future work in section 7.

Page 3

Chapter 2: Backgrounds and related works

2 Backgrounds and related works

In this chapter, we provide a quick overview for the background and related works. We present the theoretical
foundations behind the project from introducing the dynamic system for robotic manipulations 2.1 to estimating
parameters using MIT rule 2.3.

2.1 Dynamic system model for robotic manipulations
Let us begin with the dynamic model of the robot we want to control and manipulate in general. The general
dynamics of N degrees of freedom (DOF) robotic manipulators is the following [2] :

M(q)q̈ +B(q, q̇)q̇ +G(q) = ui + uenv (2.1)

where:

• q ∈ RN represents the joint configuration of the robot end effector.

• ui ∈ RN represents the internal torque.

• uenv ∈ RN represents the external torques for the system. For instance environmental force in general.

• M ∈ RN×N represents the mass matrix

• B ∈ RN×N represents the centrifugal and Coriolis forces.

• G ∈ RN represents the gravity force.

This dynamic model is represented in the joint space. One prefers to have the task space representation of the
dynamics. The end effector of the robot in the task space is represented by the vector: x ∈ R6. We should then
transform equation 2.1 using the first derivative of x:

ẋ = J(q)q̇ (2.2)

where J ∈ R6×N represents the Jacobian matrix of the system. This transformation leads to the following
equation :

Mts(x)ẍ+Bts(x, ẋ)ẋ+Gts(x) = Fc + Fenv (2.3)

where Mts ∈ R6×6, Bts ∈ R6×6 and Gts ∈ R6 represent the mass , centrifugal and gravity matrices respectively
in the task space, Fenv ∈ R6 and Fc ∈ R6 represent the internal and environmental forces applied to the system
where:

ui = JT (q)Fc. (2.4)

The transformation from the joint space to the task space and the exact definition of the matrices Mts, Gts and
Bts are formulated in this work [3].

2.2 Impedance control
Impedance control is an efficient way to compliant control the desired robotic motions. This work is presented
in the this work [4]. The structure of the Impedance controller is depicted in Figure 2.1:

Figure 2.1: Impedance control structure.

The general scheme of a robot controller is composed of a dynamic system to compute the desired motion based
on the current state of the robot and a controller to execute the desired motion with stability, optimal and
convergence behavior.

Page 4

Chapter 2: Backgrounds and related works

We can consider then the DS-based impedance control proposed by Kronander and Billard [5] as follows :

Fimp = −D(ẋr − ẋd)−K(xr − xd) (2.5)

Finv = Bts(xr, ẋr)ẋr +Gts(xr) (2.6)

Fc = Fimp + Finv (2.7)

where Fimp ∈ R6 is the output of the impedance control, D ∈ R6×6 , K ∈ R6×6 are the damping and stiff-
ness matrices and Finv is the force required to compensate for both the centrifugal force and gravity where
Bts ∈ R6×6 and Gts ∈ R6 represent the mass , centrifugal and gravity matrices respectively.

The combination of equations 2.7 and 2.3 gives the following equation :

Fext =Mts(x)ẍ+D(ẋr − ẋd) +K(xr − xd) (2.8)

We consider no acceleration to the system for simplification so we can model the external (environmental foces)
to :

Fext = D(ẋr − ẋd) +K(xr − xd) (2.9)

Figure 2.2: DS-based Impedance control [2].

2.3 Parameter estimation using MIT rule
In this section, we are going to present how to estimate a model parameter using adaptive control method from
the very general case : adaptive control method using Lyapunov function to a a more simple adaptive law called
MIT rule.

2.3.1 General Adaptive control method

The main approach in adaptive control is to first determine a control structure, and derive the error function.
The next step is to construct a Lyapunov function based on the error and derive the adaptation law. To explain
this, we start with one-dimensional problem dynamics of a robotic system as:

mẍ+ bẋ = Fc (2.10)

where m is the mass and b is the mechanical damping.
we assume also the environment(including human) in the interaction has the following desired behavior:

mẍenv + benvẋenv + kenvx = 0 (2.11)

where benv > 0 and kenv > 0 are the unknown damping and stiffness coefficients of the environment. We assume
also a simple force controller:

Fc = −kx− dẋ (2.12)

We want to estimate and adapt the unknown human parameters by trying to minimize the error between the
real velocity and the desired velocity (which is generated by dynamical system given its parameters) as explained
in the equation 2.13:

ė = ẋ− ẋenv (2.13)

Page 5

Chapter 2: Backgrounds and related works

Using the Lyapunov function after deriving the error dynamics, we can derive the adaptation law.
It is given by :

k̇ = −εxė and ḋ = −εẋė (2.14)

where ε ∈ R+ is the adaptation rate.

2.3.2 MIT rule

The MIT rule, presented in this work [2], is an alternative to find the adaptation law defined in equation 2.14.
For this rule we consider the following cost function :

J(k, b) =
1

2
e2 (2.15)

The parameters k and b can be adapted so that the error function can be minimized to zero. For this reason, the
change of these parameters is kept in the direction of the negative gradient of the error function J as explained
bellow :

k̇ = −ε∂J
∂k

and ḃ = −ε∂J
∂b

(2.16)

The partial derivatives indicate how the error is changing with respect to parameters. For the simple 1-D
example above we can write the adaptation rule as follows :

k̇ = −ε∂ẋ
∂k

and ḃ = −ε∂ẋ
∂b

(2.17)

The MIT rule is preferred to the Lyapunov method because it requires the computation of the error dynamics
which is not straightforward. However, this method is locally stable assuming that the adaptation rate ε is small.
We will use the MIT rule in this project to estimate the parameters of the environment force (see Chapter 3).

Page 6

Chapter 3: Proposed method

3 Proposed method

The main objective of this project is to classify the environment force across the following cases:

• Passive: The robot makes contact with a hard surface.

• Active: The robot is interacting with a human.

• Free: The robot is in free motion and no force is applied to it.

We have as an input vector the dynamics of the robot (speed and position) measured using the joint encoders

and the force applied to it measured by a force-torque sensor I =

Fenvx
ẋ

The Workflow of the theoretical part of the project to achieve this objective is depicted in Figure 3.1.

Figure 3.1: Theoretical method workflow: First we start by modeling the environment force with different
parameters. These parameters are then estimated using the MIT rule. After adapting the parameters, the error
between the estimated force and the measured one is computed to update the beliefs. The different parts of the
workflow are discussed in the following sections.

The main idea in this project is to use different models (i.e., passive, active, and free) for the environment
and preform the classification based on the model prediction errors. For each model, we adapt the unknown
parameters using the MIT rule (see section 3.2) to have a final estimation of the force.
At the end, the predicted errors for each model are converted to beliefs. (see section 3.3)

Page 7

Chapter 3: Modeling Environment

3.1 Modeling Environment
Let us start first with the modeling of the environment. We consider 3 different models of the environment
discussed in the following sections.

3.1.1 Passive environment

The robot executes a predefined task while allowing safe interactions with the environment and tolerating small
perturbations.Interaction between environment and robot is described in Figure 3.2.
In the passive model, the contact parameters relate the end-effector position x and velocity v to the interaction
force F̃env. b̃ and k̃ are unknown time-varying damping and stiffness matrices of the dynamics,respectively. The
force equation of the environment force is then described as follows:

F̃env = −k̃x− b̃v (3.1)

Figure 3.2: Compliant contact situation : Passive environment. The robot executes its predefined task on a
surface that acts as a spring damper passive environment.

3.1.2 Active environment

The robot, in this case, should present compliance and following behaviour. In other terms, the human can lead
the task of the robot (i.e decides on the desired trajectory). It senses then a constant force from the environment
f and some damping b without any stiffness. This model equation is described as follows:

F̃env = −f̃ − b̃v (3.2)

Figure 3.3: Active environment: Robot compliant behaviour. In this case, the robot is interacting with a
human.

Page 8

Chapter 3: Online parameter estimation

3.1.3 Pure force model

This model takes only the constant force term as follows:

F̃env = −f̃ (3.3)

For all three models, the stiffness, damping, and constant force are unknown. We need then to estimate those
parameters to characterize the environment.

3.2 Online parameter estimation
The main approach for the online parameter estimation is to use the adaptation law seen in chapter 2. The
main difference in this project is to use the error between the measured force Fm and the estimated one F̃env.
The Error function is then described as follows:

J(k, b, f) =
1

2
e2 (3.4)

where e = Fm − F̃env. We can estimate unknown environment parameters by trying to minimize this error
function using gradient decent methods described by the MIT rule. We can write then the same equations
as 2.17:

k̃ = −ε∂F̃env
∂k

(3.5)

b̃ = −ε∂F̃env
∂b

(3.6)

f̃ = −ε∂F̃env
∂f

(3.7)

where ε is the adaptation rate.

After applying the MIT rule for the different methods described in section 3.1, we get the estimations of the
following parameters:

• Passive model:

F̃env,p = −k̃passivex− b̃passiveẋ (3.8)

– model error:
ep = Fm − F̃env,p (3.9)

– model adaptation: {
k̃passive = −εepx
b̃passive = −εepẋ

(3.10)

• Active model:

F̃env,a = −f̃active − b̃activeẋ (3.11)

– model error:
ea = Fm − F̃env,a (3.12)

– model adaptation: {
b̃Active = −εeaẋ
f̃Active = −εea

(3.13)

• Force model:

F̃env,force = −f̃force (3.14)

– model error:
eforce = Fm − F̃env,force (3.15)

– model adaptation:
f̃force = −εeforce (3.16)

Page 9

Chapter 3: Passive/active classification

Now, we have all model adapted parameters and the corresponding errors between the estimated force and the
measured one. Our objective is to know if our robot is interacting with an active or passive environment or
simply in a free motion situation. Using the computed error signals, can we update beliefs about the environ-
ment? The answer to this question is in section 3.3.

3.3 Passive/active classification
Computing the model errors and the estimated parameters are not enough to classify between active or passive
environments. We have to transform this information into beliefs that show the probabilities of being in an
active or passive or even in free motion situation.

3.3.1 From error estimation to belief-updates

As a first step, we can compute the adaptation of the beliefs from the model error computed in section 3.2. It
corresponds to the variation of the beliefs over the variation of time (derivative). We used two approaches to
calculate the belief-updates: the first one using again the adaptation rule or MIT rule the same way as we did
to estimate the parameters for each model and the second one by simply considering the beliefs as a Gaussian
function with respect to the error model. These two approaches are explained mathematically in sections 3.3.1.1
and 3.3.1.2.

3.3.1.1 MIT Rule approach

Exactly as we did for the online parameter estimation, one can estimate the environment force using a linear
combination between the estimated force of the active model and the estimated force of the passive model, the
weights correspond to the beliefs of active and passive. Mathematically the estimated force is computed as
follows:

F̃env = bactiveF̃env,a + bpassiveF̃env,b (3.17)

where bactive and bpassive are the beliefs, Fenv,a and Fenv,p are the estimated environment forces using the active
and passive model respectively. These equations are computed using 3.11 and 3.8. The prior belief is uniform :
bactive =

1
2 and bpassive = 1

2 .
Using again the MIT rule we can adapt the belief at each time step by trying to minimize the force error
function:

J(bactive, bpassive) =
1

2
(F̃env − Fm)2 (3.18)

The belief-updates are computed then as follows :
ˆ̇
bactive = −∆t ∂F̃env

∂bactive
= −∆t(F̃env − Fm)F̃env,a

ˆ̇
bpassive = −∆t ∂F̃env

∂bpassive
= −∆t(F̃env − Fm)F̃env,p

(3.19)

where ∆t represents the update rate of the beliefs.

3.3.1.2 Model-error based approach

We can also consider a Gaussian relation between the belief-updates and the corresponding model error. In
other terms, if the error goes to zero we will have a maximum belief update. This will allow us to identify the
best model. The belief-updates are then computed as follows:

˙̂
bactive = C1e

−β1ẽa (3.20)

˙̂
bpassive = C2e

−β2ẽp (3.21)

˙̂
bfree_motion = C3e

−β3 ˜eforce (3.22)

where the free motion is considered as a zero force.since we consider in this approach the classification between
active, passive and free motion, the prior belief in this case is also uniform as follows : bactive = 1

3 , bpassive =
1
3

and bfree_motion = 1
3 .

In the second step, these belief-updates for the two approaches are modified based on a winner-take-all process
(WTA) that ensures only one increasing belief and 2 decreasing ones.

Page 10

Chapter 3: Winner-take-all algorithm

3.3.2 Winner-take-all algorithm

The winner-take-all algorithm, proposed in this work [6], has two inputs: a vector for the current beliefs and their
updates computed based on the error for each case (active,passive or free motion). We should also guarantee
that the beliefs are between zero and one and should also sum to 1. Firstly, the case with the greatest update
is considered as the winner. We choose randomly one when we have multiple maximums. When this winner is
already saturated at 1, no updates are necessary. Secondly, we want to have only one winner with a positive
update. This can be done by checking the second biggest update value and calculate its mean with the winner.
We subtract then this mean value from all the beliefs updates except the winner to reach our goal. Now we are
sure that only the winner has a positive update value. Finally, we ensure that the belief-updates sum to zero
to guarantee that the sum of the beliefs stays also constant. To do so, we get all the current updates different
to zero and have a negative value and sum them together. The final sum is added to the winner as a positive
value. We do this because the beliefs that have negative updates do not influence the process and should be
neglected. This is why their contribution is added to the winner to ensure that the sum of the beliefs stays
constant.

Algorithm 1 Winner-take-all algorithm

WTA (B, Ḃ) Input : Current belief vector B and belief updates vector ˆ̇B
Output: Modified belief updates Ḃ
w ← argmaxi

˙̂
bi ∀i

if bw = 1 then
ḃi ← 0 ∀i
return Ḃ

end

v ← argmaxi
˙̂
bi ∀i 6= w

µ← (˙̂bw +
˙̂
bv)/2

ḃi ← ˙̂
bi − µ ∀i

S ← 0

for i do
if bi 6=0 or ḃi > 0 then

S ← S + ḃi
end

end
ḃw ← ḃw − S

return Ḃ

3.3.3 Computing beliefs

By now, we calculated the belief-updates using two different approaches. We can then compute the belief by
integrating these belief-updates as follows:

bi = bi + ḃi∆t (3.23)

where ∆t is the sampling time and bi ∈ {bactive, bpassive,bfree_motion
}

Summarizing, the process to find the probabilities between the three cases is the following :

1. Calculate the belief-updates using equations 3.20 3.21 and 3.22

2. Ḃ =WTA(
˙̂
B,B) where B is the current probability

3. bi = bi +
˙̂
bi∆t

4. bi ← max(0,min(1, bi)) beliefs are saturated between 0 and 1.

Page 11

Chapter 3: Hyperparameter optimization

3.4 Hyperparameter optimization
Now we can classify the environment between active and passive. This method has 2 hyperparameters that
should be tuned by trial and error or optimized.

The hyperparameters of our problem are the following:

• The adaptation rate: ε

• the update rate of the beliefs: ∆t

Before optimizing our hyperparameters, we have first to define an error metric or score that illustrates the
performance of our classification method.

3.4.1 Error metric

As a measure of performance for our classification between active and passive environment, we consider the
calculus of the area between the estimated belief curve and the ideal one.

The first curve corresponds to the ideal case when the belief estimation goes very quickly from zero to one
following a step function behaviour (i.e., red plot in Figure 3.4) and the second curve corresponds to the
estimated believe from our classification method.

Figure 3.4: Area between the ideal belief and the estimated belief that corresponds to the error metric colored
in green.

Mathematically this area can be computed mathematically as follows:∫ T

0

(b(t)− bideal(t))dt (3.24)

T is the time of the simulation and bideal is the Ideal believe estimation. This integral can be computed numeri-
cally using cumulative trapezoidal integration. This area will be always positive since the estimated believe will
not go superior to one. This area between the two curves represents a good error metric that can illustrate the
performance of our classification. If the two curves get close to each other , the area between the curves will be
smaller.

One could think about different techniques of hyperparameter tuning:

3.4.2 Simple Grid-search

Taken from the imperative command "Just try everything!" comes grid search, it’s a naive but efficient approach
of simply trying every possible configuration in a certain range. To optimize our hyperparameters, a grid search
over the values of these parameters is performed. I.e., our classifier method is performed, using these parameters.
We take the two hyperparameter values that give the small computed area (based on the error-metric discussed
above 3.4.1).

Page 12

Chapter 3: Hyperparameter optimization

3.4.3 Iterative hyperparameter tuning

An alternative approach to grid-search is to consider an optimization problem. We want to minimize the area
between the ideal belief and the estimated one by changing these two hyperparameters. This can be done by
following the gradient descent for example. Many iterative algorithms exist to obtain the minimum of this
two-variables function: min F(update rate, epsilon). We used, for example, a MATLAB function "fminsearch"
that try to find a local minimum of this function starting from an initial guess. Depending on the starting guess,
this technique will converge to a local minimum. We need then to test the algorithm using different initial points.

The desired hyperparameters should perform well on active and passive environment at the same time. In other
terms, the detection of the environment type has to be independent of the choice of our hyperparameters.
We prepare next a dataset giving the estimated beliefs by changing the type of the environment at each time.
We can consider different cases of passive,active, and then combined environment when we switch the type from
active to passive or passive to active. we make sure that the dataset is balanced between active and passive to
avoid biased results. Afterwards, we perform a Nested grid-search.

3.4.4 Nested Grid-search

To be able to have efficient results with the different techniques discussed above, we have to know what is the
type of the environment to obtain efficient tuning results. In this case, we cannot find the best combination
of hyperparameters online in real robotic applications. One solution to this issue is Nested hyperparameter
tuning.
We use our balanced dataset created from different types of environment (Simulated 4.1 or real data using
experiments. 5.1) to run our adaptation for all our training data for a given epsilon and update-rate. Then we
can compute the area between the estimated belief and the ideal one. Afterwards, we can apply a 3D grid-search
by changing the values of our hyperparameters. We obtain then a three-dimensional matrix that contains the
error for a couple of hyperparameters as conceptually shown in Figure 3.5.

(Epsilon, Update rate, Environment) (3.25)

Figure 3.5: Grid search over the hyperparameters epsilon and the update rate.

The computed errors are then averaged over all the experiments (environments used in the training data), re-
ducing the dimensions of the error matrix by one. Optimal hyperparameters are found by choosing those with
the least averaged error.

The real pain point of this approach is known as the curse of dimensionality. This means that the more dimen-
sions we add, the more the search will explode in time complexity (usually by an exponential factor), ultimately
making this strategy unfeasible. To avoid this, we can run a discrete grid search for different values of our hy-
perparameters and then use the best result as a starting guess for the iterative process discussed in section 3.4.3
to obtain the global minimum of the loss function.

Page 13

Chapter 3: Hyperparameter optimization

Summarizing, we used a combination of the different techniques discussed to have the optimal hyperparameter
tuning :

1. Building the dataset from simulated or real robot data.

2. Nested hyperparameter tuning on discrete values and a reasonable number of samples.

3. Take the result of the Nested-grid search as a starting guess for the iterative process.

4. Run the iterative process using fminsearch Matlab function.

3.4.5 Hyperparameter tuning results

After applying the method described before for the hyperparameters optimazation, we found that the follow-
ing hyperparameters give the best result for both passive and active environment.Firstly, we build our dataset
from real robot data.This part will be discussed in section 5.1. Secondly, we perform the nested grid-search on
discrete values and reasonable number of samples. We interpolate then between these values. The result of this
step is depicted in the Figure 3.6.

Figure 3.6: Nested Grid search over discrete values of hyperparameters epsilon and update rate. The final
result is linearly interpolated.We tested different values. This figure shows a zoom of the best region of interest.

We can see from this figure a very good approximation of the global minimum position. We can easily choose
a starting guess for the iterative process : ε = 0.01 and update rate=0.01.
We present in the following table the final result of the tuning method after performing the iterative process
discussed in the section 3.4.

Hyperparameter Value
ε 0.0367
update rate 0.0224

Table 1: Hyperparameters tuning results: After tuning the hyperparameters discussed, we can find the best
hyperparameters that give the lowest error. ε is the adaptation rate and the update rate is used to convert the
update-beliefs to beliefs.

Page 14

Chapter 4: Simulation

4 Simulation

For illustrative purposes, we investigate the theoretical part discussed in section 3 for a simple case considering
a robot end effector with 1 degree of freedom. This can be done on simulation using MATLAB.

4.1 Implementation
The Dynamics of the robot end effector is straightforward: First, we control the robot’s end effector using
force impedance control.After adding the environment force Fenv to this control force Fc, we can compute the
dynamics of the robot using Newton’s second law as follows :

ẍ =
1

m
(Fc + Fenv) (4.1)

where m represents the end effector mass, Fenv represents the environment force and finally Fc represents the
force impedance control computed as follows:

Fc = −kc(x− xr)− bcẋ (4.2)

where xr represents the goal position of the robot. kc and bc represent the control stiffness and damping
respectively.
Since we don’t have any measurements at hands in the simulation, We should then try to simulate the environ-
ment force. We assume an active environment is applying a constant force F0 on the robot with some damping
as shown in the following equation:

Fm = −F0 − benvẋ (4.3)

where the robot hits the surface at the position and a passive environment reacting as a spring-damper with a
force equal to :

Fm = −kenv(x− xsurface)− benvẋ (4.4)

where the robot hits the surface at the position xsurface and finally a free motion environment with zero force.

The dynamic of the robot is also simulated. From the acceleration derived in equation 4.1, we can deduce the
dynamics of the system which are the velocity x and the speed v by simple rectangle integration as follows :

v(t+ 1) = v(t) + ẍ∆t

x(t+ 1) = x(t) + v(t)∆t

(4.5)

where ∆t is the update rate. Afterwards, we estimate the models online based on the dynamics of the system
and using the mit rule as explained in the theoretical part (see 3.2). The beliefs are computed with two differ-
ent ways: Gaussian 3.3.1.2 and using MIT rule again 3.3.1.1. Finally we can compute the desired beliefs. The
main problem here is that we cannot well detect the free motion using the MIT rule approach as a belief-update.

Page 15

Chapter 4: Simulation

4.2 Simulation Result
As a first result, let’s try to plot the dynamics(Position and speed) of the robot using different types of envi-
ronment. We can clearly see then a different behaviour from active to passive which can intuitively indicate a
possible pattern generation.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
System dynamic: position and speed

x [m]
v[m/s]

Figure 4.1: End effector dynamics in an active
environment

0 5 10 15
0

0.5

1

1.5

2

2.5

3

-1

-0.5

0

0.5

1

1.5

2

2.5
System dynamic: position and speed

x [m]
v[m/s]

Figure 4.2: End effector dynamics in a passive
environment

Using the MIT Rule described in section 3.2 we can adapt the parameters of each model according to the
environment which the robot is interacting with. We can see the result of this adaptation in the figure below :

0 5 10 15
0

2

4

6

8

10
Model parameters estimation

k
passive

b
passive

b
active

f
active

f
force

Figure 4.3: Parameters adaptation of active, passive
and force models together where the environment is
active.

0 5 10 15
-2

0

2

4

6
Model parameters estimation

k
passive

b
passive

b
active

f
active

f
force

Figure 4.4: Parameters adaptation of active, passive
and force models together where the environment is
passive.

We can also compute the errors between the simulated force environment and the estimated force environment
from the three proposed models when the environment is active and passive:
When the environment is active we have :

Fm = −F0 − bv

Fenv = −f̃ − b̃v
(4.6)

When the environment is passive we have :
Fm = −kx− bv

Fenv = −k̃x− b̃v
(4.7)

Page 16

Chapter 4: Simulation

0 5 10 15
-10

-8

-6

-4

-2

0

2
Force Error estimation

passive model
active model
force model

Figure 4.5: Force error estimation using active envi-
ronment for each proposed model.

0 5 10 15
-8

-6

-4

-2

0

2
Force Error estimation

passive model
active model
force model

Figure 4.6: Force error estimation using passive en-
vironment for each proposed model.

Using an active environment, we can see that the force error of the active model converges to zero and the
passive struggles and oscillates a lot before slowly converging to zero.
Despite that the force error estimation of the passive model goes to zero faster using a passive environment, all
the errors estimation using the different models converge quickly to zero because the robot at some point find the
surface and stop moving (if the position/speed converges to zero everything try also to follow this convergence
behaviour). This can cause sometimes small difficulties to detect a passive environment or especially distinguish
between passive and free motion. Which means that the error model can be a very good pattern to distinguish
between active and passive environment.

From the error estimation, we can compute the belief-updates using two different ways as discussed in section
3.3.1 and finally integrate them to get the beliefs estimation. We present the results for both approaches in
section 4.2.2 and 4.2.1.

4.2.1 Model-error based approach

We present in the figures below the different results when using the model-error based approach to update the
beliefs.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Belief estimation

passive
active
free

Figure 4.7: Belief estimation using an active
environment.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Belief estimation

passive
active
free

Figure 4.8: Belief estimation using a passive
environment.

Page 17

Chapter 4: Simulation

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Belief estimation

Passive
Active
Free motion

Figure 4.9: Belief estimation when the robot is in
free motion.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Belief estimation

passive
active
free

Figure 4.10: Belief estimation using an active envi-
ronment then passive environment after t=10s.

We see from Figures 4.7,4.8 and 4.9 that we can easily distinguish between active,passive and free motion.
We can switch also from an environment to another and see if the system can adapt it’s parameters online
and change the guess of the environment accordingly.We make here the simulation a bit longer, we change the
environment from active to free motion at time 10s and then from free motion to passive at time 20s.The result
is depicted in Figure 4.10. We notice that the system is struggling a bit to distinguish between passive and free
motion after 10s as we predicted previously.

4.2.2 MIT Rule approach

An intuitive idea to compute the beliefs is to use again the MIT rule based on the estimated error after computing
the estimated force with the updated model parameters using also the MIT rule.
Here we show in Figure 4.11, the belief estimation. We change the environment from active to passive at time
10s and then from passive to active again at time 20s.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Belief estimation

passive
active

Figure 4.11: Belief estimation using active environment then passive and finally active environment again.

The convergence of this method is very fast compared to model-error based approach. However,it doesn’t allow
us to detect free motion, it can be then used only for detecting active and passive environments. Overall, both
approaches allow us to have a good estimation of the environment’s type on simulation. Now we can move to
test our method on real robot data.

Page 18

Chapter 5 : Robotic experiments

5 Robotic experiments

We want now to test our implementation on a real robot data. We used the KUKA robot to collect some data
for different types of passive and active environments. The robot is only gravity compensated and no control
strategy is implemented to manipulate the robot. We measure the speed and the position of the robot end
effector using the joint encoders and the force applied to it measured by a force-torque sensor. We manipulate
the robot in only one axis. We get at the end our input vector: (x,v,Fenv).

5.1 Data collection
We start first to collect data with an active environment when a human is interacting with the robot. We show
in Figure 5.1 below this first experiment.

Figure 5.1: Experiment 1: Manipulating the robot and acting as an active environment.

Afterwards, we selected some objects in the lab that could act as a passive environment for the robot as shown
in Figure 5.2:

Figure 5.2: Experiments 2,3 and 4: The robot try to interact with some passive environments (some weird
objects found in the lab).

We have now a row data that we can put as an input to our implementation on MATLAB instead of putting
simulated measurements. This is the only difference from the simulation discussed in section 4.1, in other terms,
we are going to adapt the different model parameters based on real data.

We recorded two log files for each type of environments: four logs for active and 6 logs for passive (2 logs for
each passive object).

Page 19

Chapter 5 : Robotic experiments

5.2 Results on robot data
Now we have the log files for each type of environment we can parse these files to have our input dataset. For
simplicity We consider only the results on the vertical axis to have a 1D situation. We run afterwards our
method on these data after tuning our hyperparameters as discussed in section 3.4. Here we will present the
result on robot data using the error-based method adaptation.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1
passive
active
free motion

Figure 5.3: Adaptation result in an active environment : Experiment 1. The left image shows the experiment
by moving the robot and interacting with it and the right image shows the corresponding belief estimation.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
passive
active
free motion

Figure 5.4: Adaptation result in a passive environment : Experiment 2. The left image shows the passive
object used and the right image shows the corresponding belief estimation.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8
passive
active
free motion

Figure 5.5: Adaptation result in a passive environment : Experiment 3. The left image shows the passive
object used and the right image shows the corresponding belief estimation.

Page 20

Chapter 6 : Using adaptation as feedback

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1
passive
active
free motion

Figure 5.6: Adaptation result in a passive environment : Experiment 4. The left image shows the passive
object used and the right image shows the corresponding belief estimation.

6 Using adaptation as feedback

The most important thing now is that the robot should adapt its behaviour when the belief estimation changes
from passive to active our the opposite. We Add in this part the belief estimation of the environment as a
feedback control to the robot as explained in this Figure 6.1.

Figure 6.1: The model adaptation as feedback to the impedance control.

We can use the belief estimation to adapt the impedance control of the robot by changing the stiffness of
the controller in order to allow the robot to interact compliantly when the human wants to move it. We can
suppose for example two different impedance controllers where one has high stiffness and the other one a low
stiffness: This means that when the robot is executing its predefined task on the surface it will be very stiff
and reject perturbances. In this case, we want to apply the first controller that has higher stiffness. We want
also to activate the second controller when the robot have to show a compliant behaviour when it detects an
interaction with a human. In this case, we apply the second controller that has a lower stiffness. We can then
apply a unique impedance force control to the robot as a weighted sum between the two desired controllers
where the weights correspond to the beliefs of active and passive.

We show in the Figure 6.2 how the controller changes its behaviour according to the belief estimation. The
speed and position curves at the top show the dynamic of the robot. The surface is at x=1.6m from the origin
(the initial position of the robot). We can clearly see that the robot starts going to the desired position and
stops to execute the predefined task. When the human starts to interact with the robot at time t=20s, the robot
goes back to its initial position quickly. After t=25s, when the robot stops its interaction with the human,it goes
again to the surface. We show in the last curve at the bottom the transition in the stiffness of the impedance
controller. We see that the stiffness decreases when the believe estimation switches from passive to active.

Page 21

Chapter 6 : Using adaptation as feedback

A B C

Figure 6.2: This figure shows the feedback behaviour added to the robot. At the beginning (A), the robot
goes to the surface to execute its desired force on it : We can see a small period of free motion before hitting the
surface at x=1.6m. Afterwards, the robot applies its desired force to the passive environment. At time t=15s
(B), a human begins to interact with the robot, the belief estimation switches from passive to active quickly
and the robot reacts to this transition trying to change its stiffness accordingly to be compliant to the human.
When the stiffness of the impedance control changes from 5 to 1 quickly, the robot stops to execute its desired
force and goes away from the surface. When the human stops interacting (C), the robot will try to go to the
surface again. We can see again a small period of free motion between 20 and 25s and then the belief estimation
becomes passive when the robot reaches the surface.

Page 22

Chapter 6 : Using adaptation as feedback

As we saw previously, the human moves the robot between t=15s at t=20s. We want to compare here the
energy consumed by the human to move the robot with and without the adaptation. In other terms, the human
will try to move the robot at t=10s with and without adaptation and we will report the difference using the
effective power as a metric:

P =

∫ T

0

|Fv| dt (6.1)

where P is the effective power and T is the duration of the simulation.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60
With adaptation
Without adaptation

Figure 6.3: Consumed power by the human to move the robot as a cumulative integral of the force times the
speed: Before t=15s the robot executes its defines task to a passive environment, the consumed energy stays
then zero. After t=15s the human starts moving the robot so the consumed energy starts also increasing to
stop at time t=20s when the interaction with the human is finished. Since we compute a cumulative integral,
the consumed power stays constant after t=20s.

We want also to see the effect of the hyperparameters on the effective energy consumed to move the robot. This
effect is presented in the Figure 6.4.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60
With adaptation best hyperparameters
Without adaptation
With adaptation epsilon=0.02,update rate=0.002
With adaptation epsilon=0.01,update rate=0.0224

Figure 6.4: Consumed power by a human to move the robot with different adaptation hyperparameters

We can clearly see from Figure 6.4 that the best hyperparameters found in section 3.4 give also the best result
in terms of energy consumption when the human tries to move the robot and acting as an active environment.
This result is expected since the best hyperparameters ensure a fast and accurate transition between passive
and active so the control loop part added will quickly decrease the stiffness of the impedance control and then
the human will consume less energy to move the robot away from the surface.

Page 23

Chapter 7 : Conclusion

7 Conclusion

In this project, we present an approach to learn the robot to detect which type of environment it’s interacting
with by adapting the parameters of three models: passive,active and finally pure force using the MIT rule.

After adapting the parameters of each model, we calculate the final estimated force. We tried to convert this
into belief-updates using two different approaches: As a first approach, we update the beliefs based on the
error between the estimated force from the model and the measured one, We considered a Gaussian relation-
ship between the error and the belief update. As a second approach, we compute the final estimated force as
weighted sum between the passive and active models where the weights are the beliefs. The belief-updates are
then calculated using again the MIT rule. Finally the result is integrated using an update rate parameter that
should be tuned to have at the end a belief estimation of each type of environment.

Both approaches to update the beliefs are satisfactory to detect the difference between passive and active envi-
ronments. Nonetheless, the update method using MIT rule fails to detect free motion on real robot data. This
is due to the noise in the force measurements. It is also important to mention that when the robot stops moving
in a passive environment (zero speed and a constant position) it is very difficult to differentiate between passive
and free motion. The MIT rule approach considers always free motion as passive environment.

We tune the hyperparameters using a combination between a grid-search and an iterative process using a pre-
defined MATLAB function that can detect local minimums depending on the initial guess. We performed first
a nested grid-search based on real robot data and on discrete values of ε and update rate. The result of the
discrete grid-search is then interpolated between the values to detect a possible range of the global minimum
of the loss function. At the end we use a value in this range as a starting guess for the iterative process that
complete the task to find the exact global minimum.

We show also that all the adaptation method presented in this work can be integrated into the control loop of
the robot. This will allow the human to lead the tasks of the robot online and can ensure a fast and accurate
human-robot detection.

This work presents different results of the method on simulation and using also real robot data but in a very
simple situation by considering only one degree of freedom of the robot’s end effector.
The method presented in this work is based on impedance models. Another approach that can be tested also
to be able to classify the environment is to train a machine free algorithm on robot data in a sliding window
fashion. In other terms, we can take as input to this classifier a window of 1 second taking the position, the
speed and the sensed force as features and apply a machine learning classifier such as support-vector machine
or Gaussian mixture models. This can allow us to determine at each second the type of the environment the
robot is interacting with.

Page 24

References

References

[1] Ifr forecast: 1.7 million new robots to transform the world´s factories
by 2020. URL https://ifr.org/ifr-press-releases/news/ifr-forecast-1.
7-million-new-robots-to-transform-the-worlds-factories-by-20.

[2] Mahdi Khoramshahi. From human-intention recognition to compliant control using dynamical systems
in physical human-robot interaction. page 200, 2019. doi: 10.5075/epfl-thesis-9120. URL http:
//infoscience.epfl.ch/record/263779.

[3] O. Khatib. A unified approach for motion and force control of robot manipulators: The operational space
formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, February 1987. ISSN 0882-4967. doi:
10.1109/JRA.1987.1087068.

[4] Neville Hogan. Impedance control: An approach to manipulation. In 1984 American control conference,
pages 304–313. IEEE, 1984.

[5] K. Kronander and A. Billard. Passive interaction control with dynamical systems. IEEE Robotics and
Automation Letters, 1(1):106–113, Jan 2016. ISSN 2377-3766. doi: 10.1109/LRA.2015.2509025.

[6] Mahdi Khoramshahi and Aude Billard. A dynamical system approach to task-adaptation in physical human–
robot interaction. Autonomous Robots, 43(4):927–946, 2019.

Page 25

https://ifr.org/ifr-press-releases/news/ifr-forecast-1.7-million-new-robots-to-transform-the-worlds-factories-by-20
https://ifr.org/ifr-press-releases/news/ifr-forecast-1.7-million-new-robots-to-transform-the-worlds-factories-by-20
http://infoscience.epfl.ch/record/263779
http://infoscience.epfl.ch/record/263779

	Introduction and problem statement
	Backgrounds and related works
	Dynamic system model for robotic manipulations
	Impedance control
	Parameter estimation using MIT rule
	General Adaptive control method
	MIT rule

	Proposed method
	Modeling Environment
	Passive environment
	Active environment
	Pure force model

	Online parameter estimation
	Passive/active classification
	From error estimation to belief-updates
	MIT Rule approach
	Model-error based approach

	Winner-take-all algorithm
	Computing beliefs

	Hyperparameter optimization
	Error metric
	Simple Grid-search
	Iterative hyperparameter tuning
	Nested Grid-search
	Hyperparameter tuning results

	Simulation
	Implementation
	Simulation Result
	Model-error based approach
	MIT Rule approach

	Robotic experiments
	Data collection
	Results on robot data

	Using adaptation as feedback
	Conclusion

