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Chapter 1

Introduction

Improvement in robotics design (i.e., precision, energy-efficiency, cost) has transformed the indus-
trial sector. From 2001 to 2015, the worldwide annual supply of industrial robots has increased
from 81k to 254k [1]. With a number of robots increasing, the coordination between them is an
important matter in order to not disturb the continuity of a production line.

In such industrial settings, conveyor belts are primarily used as a connection between different
stations. They usually carry objects to different stations for different purposes such as assembling,
packaging and manipulation. A good coordination between the conveyor belt and the station is
necessary to obtain the expected results. Indeed, methods such as SEDS (Stable Estimator of
Dynamical Systems)[2] are able to generate a dynamical system given a set of demonstrations. A
dynamical system (DS) is a function that related the position vector to the velocity vector of an
entity such as a robotic arm. SEDS[2] is a method that treats the target to reach as an attractor.
However, the dynamic of a moving attractor is different from a fixed attractor. Despite SEDS
being stable for a fixed attractor, the convergence is no longer guaranteed for a moving attractor.
In order to solve this problem coupling the DS of the arm and the conveyor belt is necessary 1.1.

In [3], a method is presented to learn the coupling between different dynamical systems. How-
ever the coupling in this sense is different from ours as it looks for a way to synchronize different
DS. For example if one DS is the arm and the second the hand, the method will make the fingers
start moving only when the arm is close to the target. It doesn’t in itself change the shape of the
DS of the hand but it changes locally where in the DS the fingers should be if the arm is at a
certain position from the target.

In this work, we use SEDS as a motion generator for a robotic arm that adapts its behavior
to the velocity of a conveyer belt. We do not take into account the dynamics of the robotic arm.
Therefore, we consider that the robotic arm can follow any path. We look at different methods in
order for a robotic arm to adapt to the varying speed of the conveyor belt. The first solution is
to scale the norm of the DS in order to adapt to different speeds. Then we influence not only the
norm of the DS but the shape of the DS itself by making some arrangement on the demonstrations.
Last, we modify SEDS in order to include an external parameter that is dependent on the other
DS we are trying to couple with.
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1.1 Problem statement

In our work, we neglect the dynamics and kinematics of the robot and focus on the end-effector
trajectory of the arm. Therefore we assume that our robot can follow any given path. We start
by attributing a DS to the robotic arm and give the conveyor belt a constant speed vcconst. In this
case we do not couple them in order to show the necessity of coupling for our problem. The DS of
the arm is as follows:

[
ẋ(t)
ẏ(t)

]
=

[
−1 0
0 −1

] [
x(t)
y(t)

]
(1.1)

In Figure 1.1a, by using a low velocity, the robotic arm is able to intercept the object on the
conveyor belt. The arm starts at the position (1, 1) and uses the DS enunciated in equation 1.1.
The object on the conveyor belt is at (−10, 0) and goes towards the right with a velocity vcconst = 0.5.

In Figure 1.1b, we used the same DS used in 1.1. However the speed of the conveyor belt is
now of vcconst = 1, a greater speed than previously. As one can see the robotic arm using the DS
in 1.1 is unable to adapt to a different speed. This means that the arm will go to infinity without
catching the object. The system is unstable despite the stable DS given to the arm.

We have shown the necessity of coupling the dynamical system in order to improve the odds of
intercepting the object. By using the velocity of the conveyor belt we would like to influence the
DS used for the arm in order for it to adapt.
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Figure 1.1: Uncoupled system trajectories in world frame using different speed vcconst for the con-
veyor belt.

For example with a speed of vcconst = 1 we clearly see that the arm is unable to intercept the
object but one can change the DS of the arm in order to cope with the new velocity. By giving a
new DS to the arm given by:

[
ẋ(t)
ẏ(t)

]
=

[
−0.1 0

0 −1

] [
x(t)
y(t)

]
(1.2)
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Table 1.1: Table of average speed of arm with vcconst=1 and different DS.

Average speed of arm trajectory with vcconst = 1

DS in 1.1 0.0630

DS in 1.2 0.0096

In Figure 1.2, one can see the simulation with a fast moving object vcconst = 1 and a new DS in
equation 1.2 given to the arm. One can notice that the shape changes and the overall velocity is
actually lower than previously (Table 1.1). This can be explained intuitively, indeed by lowering
the speed along x the robot has more time to go down in y because the arm is not moving toward
the object as fast as previously.
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Figure 1.2: Uncoupled system with the arm using the DS in 1.2 and conveyor with speed s=1.

In the following the advantages of coupling, the objectives of this paper and the hypothesis are
presented.

Advantages: One can see the benefice of having a system were the DS changes in function
of an exterior signal (e.g., the velocity of the target-point). Not only are we now able to catch a
fast moving object but the robot does it with an overall slower velocity. This method improves the
capabilities of the robot because it can now adapt to a faster object while not increasing its own
velocity. Furthermore, according to [4], ”Push-grasping is a robust way of grasping objects under
uncertainty. It is a straight motion of the hand parallel to the pushing surface along a certain
direction, followed by closing the fingers.”. One can imagine changing the way the robot grasp the
object on the conveyor belt depending on the uncertainty therefore the speed of the conveyor belt.

Objectives: The goal is to adapt the DS of the arm for any kind of velocity vc of the con-
veyor belt. Different approaches are presented throughout this report. The scaling of the DS,
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the arrangement on the demonstrations and SEDS learning the coupling are the three methods
presented.

Hypothesis: One can intercept an object on a conveyor belt by coupling a conveyor belt with
a robotic arm.

Figure 1.3: A robot executing the required task or maybe it’s me, who knows...

6



1.2 Related works

1.2.1 SEDS (Stable Estimator of Dynamical Systems)

The DS is defined using a set of demonstrations and the SEDS algorithm. Throughout this paper
SEDS is used to generate a DS we can do analysis on. The following section reminds the reader of
the theory related to SEDS, for further information please refer to [2].

1.2.1.a Mathematical framework of SEDS[2]

The algorithm presented in [2], estimates a DS based on demonstrations while ensuring that the
solution is globally stable. A first order autonomous Ordinary Differential Equation (ODE) is given
by:

ξ̇ = f(ξ) (1.3)

where f : Rd → Rd is a non linear differentiable function with a single equilibrium point at
ξ̇∗ = f(ξ) = 0 and θ is the set of parameters of f. Given a set of N demonstrations {ξt,n, ˙ξt,n}Tn,Nt=0,n=1

the SEDS (Stable Estimator Dynamical System) estimates the function f using a mixture of Gaus-
sian functions. The estimate of f denoted f̂ is estimated by k = 1..K gaussians, with πk the priors,
µk the means and Σk the covariance matrices[2].

µk =

(
µkξ
µk
ξ̇

)
& Σk =

(
Σk
ξ Σk

ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
(1.4)

Given the demonstrations the probability density function is given by[2]:

P(ξt,n, ξ̇t,n; θ) =
K∑

k=1

P(k)P (ξt,n, ξ̇t,n|k)

{
∀n ∈ 1..N

t ∈ 0..Tn > 0
(1.5)

where P(k) = πk is the prior and P (ξt,n, ξ̇t,n|k) is the condition probability density function
given by[2]:

P (ξt,n, ξ̇t,n|k) = N (ξt,n, ξ̇t,n;µk,Σk) =
1√

(2π)(2d)|Σ|
−exp

1
2 ([ξt,n, ξ̇t,n]−µk)T (Σk)−1([ξt,n, ξ̇t,n]−µk)

(1.6)
Taking the posterior mean estimate of P(ξ̇|ξ)[2]:

ξ̇ =
K∑

k=1

P(k)P(ξ|k)
∑K

i=1 P(i)P(ξ|i)
(µk
ξ̇

+ Σk
ξ̇ξ

(Σk
ξ )
−1(ξ − µkξ )) (1.7)

The notation of (1.7) can be simplified. [2] defined variables as:




Ak = Σk
ξ̇ξ

(Σk
ξ )
−1

bk = µk
ξ̇
−Akµkξ

hk(ξ) =
∑K

k=1
P(k)P(ξ|k)∑K
i=1 P(i)P(ξ|i)

(1.8)

Substituting (1.8) into (1.7) yields[2]:

ξ̇ = f̂(ξ) =

K∑

k=1

hk(ξ)(Akξ + bk) (1.9)
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1.2.1.b Stability

In order to be stable the model has to satisfy the following theorem [2]:
Theorem 1 Assume that the state trajectory evolves according to (1.9). Then the function described
by (1.9) is globally asymptotically stable at the target ξ∗ in Rd if:

{
bk = −Akξ∗
Ak + (Ak)T ≺ 0

∀k = 1..K (1.10)

where (Ak)T is the transpose of Ak, and ≺ 0 refers to the negative definiteness of a matrix.

1.2.2 Implementation of SEDS on Matlab

The SEDS source code in Matlab is available at [5]. In our version, one can choose the number
of demonstrations and draw them using a mouse directly on a Matlab figure. The code has been
adapted from [6]. Examples of the program running are shown in Figure 1.4.

The program needs different demonstrations with the same number of points. Therefore a
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) is computed on the data extracted
from the drawings to get the program running.

-1 -0.5 0 0.5 1
X-Position

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
-P

os
iti

on

Demonstrations
Streamlines of DS

-1 -0.5 0 0.5 1
X-Position

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
-P

os
iti

on

Demonstrations
Streamlines of DS

-1 -0.5 0 0.5 1
X-Position

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
-P

os
iti

on

Demonstrations
Streamlines of DS

-1 -0.5 0 0.5 1
X-Position

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
-P

os
iti

on

Demonstrations
Streamlines of DS

Figure 1.4: Examples of the application of SEDS on Matlab.

1.2.2.a Simple application: intercepting moving objects

The theory and the implementation on Matlab enables us to run a simulation of the system. In
Figure 1.5, one can see the case where the conveyor belt is not moving. The robotic arm is following
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the lines given by some DS based on demonstrations that we input using the mouse of a computer.

Figure 1.5: Regime with a static object.

In Figure 1.6, we represent the case where the conveyor belt is moving at a certain velocity.
One can notice that after the time dt the conveyor belt follows another line along the DS because
the object is moving towards it at the same time.

Figure 1.6: Regime with a moving object.

1.2.3 Coupled dynamical system - State of the art

The paper [3], describes how to couple two dynamical systems. The approach uses a robotic arm
with a hand that can grasp by closing its fingers. The dynamical systems of the arm and hand are
independent. The problem the paper [3] solves is how to make the hand open up in function of the
state of the arm. There is a relation Master-Slave between the arm (master) and the hand (slave).
Indeed, the objective is to close the hand only when the object is close to the arm.
An algorithm is presented using a DS for the arm and taking the state of the DS of the arm and
putting it into a so called coupling function Ψ(ξm) with ξm the position vector of the master. This
coupling function will then infer a value of the target state and give it to the slave. A figure from
the paper is shown in 1.7

The coupling presented in our paper is different. In [3], two different DS are synchronized however
the shape of the DS of the master or slave is not changed . The movement that the hand will do
is only delayed but it is not changed in shape.
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In our paper we are trying to modify the DS in norm and in shape in order to accommodate to dif-
ferent speeds. Our coupling is solely based on an external signal vc of the conveyor belt representing
the speed.

Learned GMMs Master Sub-System

Slave Sub-System

P
(
ξm, ξ̇m |θm

)

P
(
Ψ(ξm) , ξ̃s |θinf

)

P
(
ξs, ξ̇s |θdyn

)

ξ̇m=E
[
P
(
ξ̇m |ξm

)]

ξm ← ξm + ξ̇m∆t

ξ̃s = E [P (ξs |Ψ(ξm) )]

ξ̇s = E
[
P
(
ξ̇s

∣∣∣
(
ξs − ξ̃s

))]

ξs ← ξs + ξ̇s∆t

ξm

ξs

CouplingΨ(ξm)

R
O

B
O

T

ξ̃s

Fig. 2. Task execution using CDS model. Blue region shows the three
Gaussian Mixture Models which form the full CDS model. Green region
shows the master sub-system where the cartesian position of the robot end-
effector evolves in time as a DS and is continuously fed to the robot. Magenta
region shows the slave sub-system where the finger joint angles evolve in time
as a DS, but also influenced by the state of the master system andfed to the
robot. Coupling is ensured by passing selective state information in the form
of Ψ(ξm) as shown in red.

drawn from the joint distribution:

P (ξ|θ) =
K∑

k=1

πkN
(
ξ;θk

)
.

As detailed in Table I, this model makes it possible to perform
probabilistic regression for the value of output variableξO

given the value of input variableξI at each time instant. E.g.,
as applied in previous works [9, 12] in the special case of
learning dynamics, the desired state velocities can be queried
conditioned on the current state. Note that in this special case
which models only the dynamics of the task, the partitions
ξI andξO correspond respectively to the spatial positions and
velocities of the robot’s end-effector. Since this is not always
the case in the CDS model, we will keep this generalized for
now and define the partitions for the different components of
the coupled model in later subsections. In the next sections,
we show that the CDS model harnesses much more from the
GMM than just states and velocities by learning the coupling
information in addition to the dynamics.

B. Coupled Dynamical System

In the classical case of learning position and orientation
dynamics, one GMM each for hand and finger motions would
suffice to model the dynamics. However, to model a reach-
grasp with hand-arm coordination, it is required to have a
more complex approach. Note that Gribovskaya and Billard
[9] have used a coupling between position and orientation in
the inverse kinematics. However, the main purpose served by
this approach was to avoid unfavorable joint postures

The CDS model derives inspiration from the biological
evidences of reach-grasp coupling [7, 16]. These studies
advocate the fact that there is a parallel, but time-coupled
evolution of these sub-tasks combined with synchronized
termination constraints. E.g., if the fingers close before the
hand reaches the object, the task fails. Moreover, this order
needs to be maintained under spatial, temporal and grasp-type
perturbations. Another example of a situation where coupling
is needed is that of change in grasp type. When the required
grasp type is changed on the fly, if the change occurs from a
low-aperture grasp to a high aperture grasp, a full reopening
may be needed which is only possible if the coupling is active.

We first formally discuss the CDS model in subsections
describing the model creation and the procedure for task
execution. To establish intuitive understanding, we present a
2D example as a representative of higher dimensional grasping
tasks. Subsequently, we show that the CDS model retains the
global stability endowed in the individual GMMs bystable
estimator of dynamical systems (SEDS) Khansari-Zadeh and
Billard [12] and the fact that different GMMs are coupled
using a coupling function does not affect the overall stability
of the model.

1) Model Building: Let ξm denote the state of the master
sub-system andξs that of the slave sub-system in their
respective goal reference frames. Consider the setG of all
objects for which grasping behaviors are demonstrated. The
following three joint distributions are learned as explained in
Table. I -

1) P
(
ξm, ξ̇m|θg

m

)
: encoding the dynamics of the master

2) P (Ψ(ξm), ξs|θg
inf): encoding the inferred state of the

slave conditioned on the master (we will refer to this
quantity asξ̃)

3) P
(
ξs, ξ̇s|θg

dyn

)
: encoding the dynamics of the slave

∀g ∈ G. HereΨ : Rdm 7→ R denotes thecoupling function
which is a monotonic function ofξm with the constraint

lim
ξm→0

Ψ(ξm) = 0 (2)

and dm denotes the dimension of the master sub-system.
The purpose of the coupling function is to transfer relevant
information between the sub-systems so as to ensure coupling
between them. The distributions for learning dynamics (i.e.
P
(
ξm, ξ̇m|θg

m

)
andP

(
ξs, ξ̇s|θg

dyn

)
) is learned using SEDS

given by which produces globally stable model but can only
handle models with|ξI| = |ξO|. On the other hand, the
distribution P (Ψ(ξm), ξs|θg

inf) is learned using non-linear
programming to fit gaussians to the data under the constraint

lim
x→0

E [ξs|x] = 0. (3)

In the context of reach to grasp tasks studied in this work, the
master sub-system corresponds to reaching motion with state
vector as the cartesian position of the end-effector. The slave
sub-system corresponds to the motion of the fingers with state
vector as the finger joint angles. Note that the same model can
be used with orientation variables (Euler angles or Axis-angle

Figure 1.7: Figure from the paper[3].
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Chapter 2

Approach

2.1 Introduction

In this chapter, three different approaches are presented.
In the first part, we try to only change the norm of the dynamical system in order to adapt to the
varying speed of the conveyor belt. In the second part, we begin to think of a way to change the
shape of the dynamical system. The main idea is to use demonstrations at discrete speeds and do
a weighted sum of them to simulate a demonstrations between discrete values of vc the speed of
the conveyor belt. In the third and last part we modify SEDS algorithm in order to include an
external parameter vc that adapts the DS behavior for some speed vc.

2.2 Scaling method

2.2.1 Motivations

The idea of this solution is to vary the speed along the trajectories. By estimating the position of
the arm based on a speed parameter one can tune it in order for the conveyor belt and the arm to
be coupled.

2.2.2 Implementation

Application with a static object

In this case the conveyor belt doesn’t move. The arm is using the trajectories given by the SEDS
to reach the static object on the conveyor belt. This is the first implementation we do to test SEDS
algorithm.

The SEDS algorithm gives the relation between the position vector of the robotic arm ξ =

[
xa

ya

]

vector and the velocity vector ξ̇ =

[
ẋa

ẏa

]
. f̂ : R2 → R2 is a function with a single equilibrium point

at the origin, ξ̇∗ = f(0) = 0.

ξ̇ = f̂(ξ) (2.1)

Depending on the position of the object on the conveyor belt [xc; 0]T one has to shift the func-
tion f given by SEDS in order for the arm to target the static object on the conveyor belt. If the
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object is within the workspace of the robotic arm the robot is able to perform the given task.

The relation between the current position and the next position according to SEDS is given by
the next equation:

[
xat+dt
yat+dt

]
=

[
xat
yat

]
+

[
fx(xat − xc)
fy(y

a
t − yc)

]
∗ dt (2.2)

We can however notice that because the object is still not moving the convergence is guaranteed
as SEDS is globally stable. An illustration of the situation is shown in Figure 1.5.

Coupling between the robotic arm and the conveyor belt

The DS of the arm is scaled by a factor Ka depending on the speed of the conveyor belt. The norm
of the DS is given by ||f(ξ)|| which can be multiplied by a the parameter Ka depending on the
speed of the conveyor belt. The two systems are coupled using the following equations:

xct+dt = xct + vc · dt (2.3)

[
xat+dt
yat+dt

]
=

[
xat
yat

]
+Ka

[
fx(xat − xc)
fy(y

a
t − 0)

]
∗ dt (2.4)

We need to define criteria in order to find a meaningful Ka. Indeed, by just taking Ka maxi-
mum one can ensure convergence for all velocities as long as there is convergence with Ka and vc
maximum. This is because if the arm is fast enough to reach an object coming with a maximum
speed vc then it is fast enough to reach an object coming slower.

−→x afinal = −→x abegin + dt ·
target·reached∑

t=0

Ka · f
([
xat − xct

y

])

xcfinal = xcbegin + dt ·
target·reached∑

t=0

vct

target reached when

∣∣∣∣
∣∣∣∣
[
xafinal
yafinal

]
−
[
xcfinal

0

]∣∣∣∣
∣∣∣∣ < ε

(2.5)

The above equation 2.5 gives the final position of each system when the difference in position
is inferior to a certain tolerance ε. vct is the speed of the conveyer belt at time t.

The arm position in the DS space depends on the position of the conveyor belt at each dt. Those
observations show that the only way to solve the system is by brute force meaning computing the
position of the conveyor belt at each dt and use it to find the trajectory of the arm. Therefore
given a set of planned velocities of the conveyor belt, we can predict the intersection location and
time for a certain Ka.

To make our case realistic one has to define more conditions that are present in real life appli-
cations in robotics. Every robot has a workspace therefore the point of intersection must be within
the workspace of the robotic arm. Furthermore, we assume that the robotic arm can follow any
line given by the DS.
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Search for the right parameter Ka

We define several different conditions to find the right Ka as follows (with interception within the
workspace):

1. Minimize the time to reach the target object. (Time efficiency)
2. Minimize the path taken by the arm to reach the object. (Energy efficiency)
3. Choose a precise location within the workspace as an optimal point of interception. (Precision)

The main ideas of the algorithm are as follows:

• Sweep the parameters Ka from zero to max value
• Run the computation of trajectory to solve the system
• Break the loop if target is not reach after xabegin < xcbegin
• If the target is reached within the workspace and with a better cost function value than

previously then save the trajectories or the arm and the conveyor belt.
• Continue until all possible Ka are tested.

The finer the sweep of Ka the more it is likely to find an optimal solution however the compu-
tation cost of running the simulation for each Ka increases.

2.2.3 Results

In this section, we run our algorithm for different conditions (time efficiency, precision and energy
efficiency). We choose common parameters to compare the chosen Ka. We use the same DS in
order to be able to compare our results. If the DS generates a trajectory with y < 0 then we set y
to zero.
The parameters chosen are defined as follows:

Ka ∈ [0, 5] tested by steps of 0.01

vcslow = 0.01 & vcfast = 0.05 Speed of the conveyer belt

Workspace: [xmin, xmax] = [−1, 1]

dt = 0.1

(2.6)
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Figure 2.1: Dynamical system used for all results of this part.
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Minimize the time to reach the target object.

The results are shown in Figure 2.2. As one would expect the best path is the one with a high Ka.
However it is not precisely the maximum which would be 5 but only 4.98 and 4.92. After checking
it turns out that above those values it’s not worse but it’s not better either.
Furthermore there is no upper limit on Ka in order for the object to not converge anymore. Indeed,
as Ka increases the velocity of the object becomes negligible to the point where we would have a
classical SEDS system with a fixed object.
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(a) vc = 0.01 and best Ka = 4.98
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(b) vc = 0.05 and best Ka = 4.92

Figure 2.2: The arm and the object trajectory in the world frame. Minimize the time to grab the
object.

Minimize the path taken by the arm to reach the object.

The results are shown in Figure 2.3. In order to increase energy efficiency the length of the path
taken by the arm to reach the object is computed. The arm tends to wait for the object to come
instead of reaching out for it. The values of Ka are as small as possible for a given speed vc
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(a) vc = 0.01 and best Ka = 0.19
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(b) vc = 0.05 and best Ka = 0.94

Figure 2.3: The arm and the object trajectory in the world frame. Minimize the path length of the
arm trajectory.
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Choose a precise location within the workspace as an optimal point of interception.

The results are shown in Figure 2.4. The point of interception between the arm and the object
are computed for all Ka. As one can see for the same target x = 0 the value of Ka is different for
different values of vc.
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(a) vc = 0.01 and best Ka = 0.25
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(b) vc = 0.05 and best Ka = 1.24

Figure 2.4: The arm and the object trajectory in the world frame. Intercept the object close to a
chosen location.

Range of interception with defined parameters

In the precedent part a value of x = 0 is chosen as a target. In this section an observation is made
on the possible target values the arm can have in function of the velocity of the object on the
conveyer belt vc for this specific DS.
In Figure 2.5, one can see represented in red the region where interception of the object is possible
given the set of parameters chosen in equation 2.6. Several observation can be noted:

• Red region:

– The red region gets smaller as the velocity of the object increases. It is therefore more
complicated to catch a fast object than a slower one.

– The red dots are the points of interceptions computed with each Ka. The spacing
between them is only dependent on the step chosen for the computation of Ka.

• Blue region:

– The blue region is the region near the starting position of the object. It gets bigger as
the speed of the conveyer belt increases. This is to be expected because as the object
goes faster, the object travels more distance until the arm finally reaches it. In order to
prevent this, increasing the maximum value of Ka is a solution. Another solution would
be to pick up a DS that goes to the origin in a straight trajectory, reducing therefore
the traveled distance. However scaling doesn’t change the shape of the DS.

• Purple region:

– The purple region is the region close to the starting position of the robotic arm. It is
almost constant in length independently of the speed of the conveyer belt. To reduce this
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region one can think of changing the shape of the DS in order to have steeper trajectories
in the y direction. Another way is to wait until the object comes close to the arm and
start the motion then.
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Figure 2.5: Points of interception with all Ka within the defined range in function of the speed of
the object on the conveyer belt.

2.2.4 Intermediate conclusion

Our first solution enables us to have some flexibility to grab a moving object on a conveyer belt.
As seen in Figure 2.5, the area of exchange depends on the speed of the object however one can
always make the system more robust by increasing the Ka maximum.
The necessity of changing the shape of the DS has been shown by the limitations of our first method.
Indeed, with steeper trajectories in the y direction, the purple region can be reduced significantly.
The blue region can also be reduced by choosing a DS with more direct trajectories to the origin.
Changing the shape of the DS not only helps reduce the blue and purple region it also does so
without requiring necessarily a faster robotic arm.
In the further sections, the goal is to change the shape and the norm of the DS in function of the
speed of the object on the conveyer belt.
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2.3 Arrangements on the demonstrations

2.3.1 Motivations

The idea of this solution is to perform several sets of demonstrations with different speeds. By
doing a weighted sum of demonstrations at different speeds one can obtain a DS that was not
demonstrated. We are now starting to change the shape and the norm of the DS in order to adapt
to the speed of the conveyor belt.

2.3.2 Implementation

In order to implement our approach on Matlab, we generate parametrized demonstrations. The
approach works for any a set of curves driven by set of parameters {βn}n=nβn=1 , such that 1 ≤ nβ and
nβ ∈ N. In this part the set of curves chosen only depends on one parameter 1 ≤ β1 such that:

[
x(t)
y(t)

]
=

[
x0 exp−t

y0 exp−β1×t

]
(2.7)

Two sets of demonstrations begins at random points (x0, y0) for β1 = 1 and β1 = 6 are presented
in Figure 2.6

(a) β1 = 1 (b) β1 = 6

Figure 2.6: Demonstrations from different starting positions with β1 = 1 and β1 = 6

Given the infinite set of curves available one needs to choose the right ones in order to be able
to catch an object with a speed vc. An optimization is implemented and explained later in this
paper, see 2.5

To implement the method one needs to collect data of trajectories using different speeds vc.
The idea is to do measurements at discrete speeds vc1, .., v

c
N . Therefore, given a speed vc such that

vcp < vc < vcp+1 with 1 < p < N , p ∈ N, the demonstrations are modified as follows:

demosvc =
vc − vcp
vcp+1 − vcp

∗ demosvcp+1
+
vc − vcp+1

vcp − vcp+1

∗ demosvcp (2.8)
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Figure 2.7: Simulation by a change of speed at each change of color. One can notice the change of
slope when the speed changes.

2.3.3 Results

In Figure 2.7, the conveyer belt takes successively three different speeds vc. The robotic arm
computes a new DS each time the velocity of the conveyer belt changes. One can notice the sharp
changes of trajectory when there is a color change on the blue curve of Figure 2.7. This shows that
this approach is capable of changing the shape of the DS.

2.3.4 Drawbacks

We managed to implement an approach that changes the shape of the DS. By using demonstra-
tions on some speeds vcp, one can artificially create demonstrations over the continuous parameter
vc. However, averaging the demonstrations requires that one obtains demonstrations at different
speeds starting from the same position. Furthermore, the SEDS model must be generated for each
speed vc making it computationally expensive to use.

2.3.5 Intermediate conclusion

In the next part, we try to adapt the SEDS algorithm in order for vc to become an external
parameter of SEDS. The goal is to have gaussians estimating the DS with vc being a sweep variable
that can select the right DS for a certain value of vc, the speed of the conveyer belt. Furthermore,
the optimization function to find the parameters of the set of curves in function of vc is presented.
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2.4 Add a parameter to SEDS

2.4.1 Motivations

The idea of this solution is to add a third dimension to the DS. The three dimensions are now x,
y and vc the speed of the conveyer belt. Given a set of demonstrations with different speeds vc,
one can generate a DS that gives a 2D solution that converges for any speed vc. The conveyer belt
speed vc is replaced by s parameter which is more general as it represents any external signal.

2.4.2 Implementation

Mathematical approach

The robotic arm is described by a two dimensional vector in R2. The external parameter s ∈ R is
a dimension that we add to SEDS. In our case s = vc,

Let Ak be a 2x2 matrix and bk a 2x1 vector.. According to SEDS presented in section 1.2.1 the
function that approximates the DS given a set of demonstrations is given by:

ξ̇ = f̂(ξ) =

K∑

k=1

hk(ξ)(Akξ + bk) (2.9)

With our approach the position and velocity vectors are given by:

ξ =




x
y
s


 & ξ̇ =




ẋ
ẏ
0


 (2.10)

In order to express the dimension of s as an external parameter the matrices Ak are modified
as follows:

Figure 2.8: Modified SEDS

Observations:

• ṡ is a dummy variable. The value it takes does not have any significance.

• hk(ξ; s) influences the activation of the kth local dynamics. In other word this is where the
gaussians store the information given by the external input s as well as x and y.

•
[
Ak 0
0 −1

]
This matrix has its last line and column set to zero except the last element of

the diagonal that is set to -1. The -1 is to keep the matrix stable and invertible. The zeros
specially in the column are set in order for the parameter s to not have any influence on the
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dimensions of x and y. Indeed Ak is a 2x2 matrix therefore if one develops the first line of
the equation one gets :

ẋ =
K∑

k=1

hk(ξ; s)
(
ak1 × x+ ak2 × y + 0× s+ bkx

)

According to the stability theorem seen in (1.10), there are two constraints to satisfy. Let:

b̄k =

(
bk

0

)
& Āk =

[
Ak 0
0 −1

]
(2.11)

The constraints are as follows:



bk =

(
0

0

)

Ak + (Ak)T ≺ 0

∀k = 1..K

with Ak a 2x2 matrix and bka 2x1 vector.
(2.12)

The matrix Āk is a 3x3 matrix. In order to ensure stability in the two dimensional plane of
[x, y]T we check only the first two rows and columns of Āk for stability, therefore we only check the
matrix Ak. By doing so we are sure to have stability in every plane with any defined parameter s.

Optimization of the modified SEDS

In order to find the right parameters a MSE (Mean Square Error) optimization is performed. The
parametrization is similar to the original SEDS only the matrices Ak have one dimension lower.
the parametrized vector is therefore given by:

Figure 2.9: Parametrization vector of the optimization

The parametrization vector shown in Figure 2.9 contains the priors π̃k, the means µkξ , the

cholesky decomposition of the variance matrix Lkξ and the component of matrix Ak which only
contains the first two dimensions.
MSE method minimizes the error which is the difference between the demonstrations and the model
given by SEDS. The cost function is defined as the sum of those errors along a trajectory given by
the demonstrations.

J =
1

2×∑N
n=1 T

n

Tn∑

t=0

∥∥∥ ˆ̇
ξt,n − ξt,n

∥∥∥

With
ˆ̇
ξt,n the estimation of SEDS and ξt,nthe demonstrations

(2.13)

The constraints of the optimization are the conditions of stability enunciated in equation 2.12.
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2.4.3 Results

In this part a real implementation of the modified SEDS is demonstrated. In our case the external
signal s corresponds to the velocity of the conveyor belt vc. In order to find sets of demonstrations
that do actually grab the object one has to run an optimization to select the best parametrized
curves. Given a set of demonstrations parametrized by the parameter βn one needs to run an
optimization to find the perfect set of parameters βn for a certain velocity vc. For further details
see the next part 2.5. In this part we set s = vc = β1.

2.4.3.a Set of parametrized curve given as demonstrations

A set of demonstrations has been chosen in order for the trajectory to take a shape that is more
appropriate as the speed vc increases. To have a robust grasping of the object the faster the
conveyor the faster the arm should move towards the conveyor belt. The equation of the trajectories
depending on β1 are given by: [

x(t)
y(t)

]
=

[
x0 exp−t

y0 exp−β1×t

]
(2.14)

Number of Gaussians

The SEDS algorithm does an optimization in order to fit the data while ensuring stability. The
goal of this part is to provide a method to choose the right number of Gaussians to use in order to
get a good fit of the data while have a computational time relatively low.
By taking the final value of the cost function one can get an idea on how close the model fits the
data. The algorithm is dependent on random initializations. Therefore we run 50 times SEDS for
each number of Gaussians and plot the final value of the optimization function in Figure 2.10. We
use 100 demonstrations for each run, the train/test ratio is of 50%. Indeed the cost function is
computed on data different than the one used to train SEDS. The precision improves from one
to four Gaussians after that the difference is not worth the computational cost. Therefore for our
application we will use a regression with K = 4 Gaussians.
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Figure 2.10: Final value of FVAL in function of the number of Gaussians used. The variance of
the data is represented by the vertical lines.

DS obtained by running the modified SEDS

The resulting DS is a 3D system with x, y and s as the dimensions. In each plane of parameter
s there is only one attractor for x and y. In Figure 2.11a, the DS is represented with the three
dimensions, it is stable as the vector field point to the origin for each value of s. In Figure 2.11b,
the demonstrations and SEDS approximation are shown. In Figure 2.11c and 2.11d, it is important
to notice that all the vector seems flat meaning that if a vector is in a certain plane s it cannot
point to another s plan, it can only point in the x-y direction.
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Figure 2.11: Vectorial field of demonstrations and modified SEDS

Influence of parameter s

The influence of parameter s is shown in Figure 2.12. One can notice that as the speed vc = s
increases the trajectory becomes more steep in the y direction in order to catch up with a fast
object on the conveyor belt.
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Figure 2.12: DS result with different values of s

Comparison of our new method with the original SEDS

In Figure 2.13, one can see the difference between the original SEDS algorithm and our modified
version. The goal is to have a DS that depends on the external signal s. Because of our curve
parametrization depending on the single parameter β1 = s = vc, one expects the DS to have a
steeper slope when β1 increases.

(a) Before the adaptation (b) After the adaptation

Figure 2.13: DS results with s=2 and s=6

2.4.4 Intermediate conclusion

It is important to note here why the original SEDS does not work as well as our modified version.
Indeed, the original SEDS can provide the same results as ours however it needs to find a solution
where in the activation matrices Ak the zeros as placed exactly as what we did. This means that
the original SEDS is not constrained enough for the optimization we are trying to accomplish.
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Second important note is that in the previous result section we set s = vc = β1. However, one needs
to distinguish carefully between the three variables. The variables s is a general external signal
independent on the other dimension of SEDS. The variable vc is an example of what could be the
variable s in a real application, here vc is the speed of the conveyor belt. Last, the variable β1 is a
parameter of the demonstrations curves. It can possibly be part of a bigger set of {βn}n=nβn=1 , such
that 1 ≤ nβ and nβ ∈ N. In order to provide quality demonstrations one has to run an optimization
with the parameters of the set {βn}n=nβn=1 , this will generate trajectories that will be selected or not
using a defined cost function. The trajectories that can pick up an object at a certain speed vc are
saved as [x; y; vc]T and [ẋ; ẏ; 0]T . This is further discussed in 2.5.
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2.5 Find suitable demonstrations for moving objects

2.5.1 Motivations

In order to generate demonstrations suitable for a certain speed vc of the conveyor belt, one has to
perform a search. Indeed, there are an infinite number of trajectories that can successfully intercept
an object on a moving conveyor belt. In this part an approach is presented to choose the right
trajectories for a certain speed vc. Once one has trajectories in function of different speeds vc, one
can use them to learn the DS using the approaches in 2.3 and 2.4.

2.5.2 Implementation

Given a a set of curves driven by a set of parameters {βn}n=nβn=1 , such that 1 ≤ nβ , nβ ∈ N and
βn ∈ R. This set of parameters generates different curves with the function g(β1, β2, ..., βnβ , t) ∈ Rd
with d ∈ N the dimension of the robotic arm (in our case d = 2). In order to select the right
combination of {βn}n=nβn=1 for a certain speed vc. One can run the simulation with a given set of
{βn}n=nβn=1 by following the given equation:

−→x a(t) = g(β1, β2, ..., βnβ , t)

xc(t) = xc0 + vc ∗ dt

target reached when

∣∣∣∣
∣∣∣∣
[
xafinal
yafinal

]
−
[
xcfinal

0

]∣∣∣∣
∣∣∣∣ < ε

(2.15)

One has to define a cost function that will restrict the infinite possibilities. For example, a cost
function that minimizes the time to pick up the object will search for parameters {βn}n=nβn=1 such
that the time at which the target is reached is minimized.
The constraints required are to bound the parameters {βn}n=nβn=1 . Simulations that do not converge
must be interrupted. We defined that if the robot x-position gets bigger than the arm starting
x-position then the object went through the arm and the simulation is interrupted. A fixed value is
then given to the cost function. The cost function has flat regions due to those failed simulations.
In order to perform an effective search fmincon[8] was not used but instead patternsearch[9] which
is a global optimization function.
Note that the demonstrations selected are given to the modified SEDS in respect to the object
position.

2.5.3 Results

Figure 2.14, is a diagram that presents the global view of the implementation. Given a set of
parametrized curves one can run simulations to find the most fitting curve given a certain velocity
of the conveyor belt. Those curves are then used to train effectively the modified SEDS.
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Figure 2.14: Diagram of the whole system.
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Figure 2.15: Optimizing the time to intercept the object. Object starts at x = -1; Robotic arm
starts at [1; 1]T

An optimization minimizing the time to intercept the object by the arm is implemented. The
set of curves used depends on two parameters {β1, β2}. The curves are represented as a DS as it is
presented in 1.1.

ẋ =

[
−β1 0

0 −β2

]
x with 0 ≤ β1 ≤ 1 and 0 ≤ β2 ≤ 1 (2.16)

As seen in 1.1, when the velocity of the object is low the trajectory provided is direct therefore
β1 = β2 = 1. When the velocity increases, β1 decreases in order to not go towards the object as it
is already coming towards the robotic arm.
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2.5.4 Limitations of the method

By doing an optimization on parametrized curves one chooses a random starting position, a random
speed vc and try to find a trajectory that intercepts the object. However starting position conflict
with each other. Indeed, if one starts from [1; 1]T and from [0.1; 0.1]T the trajectory from [1; 1]T will
go through the region of [0.1; 0.1]T in order to reach the origin. SEDS tries to find a compromise
between the two trajectories present in the region close to the origin for a certain speed vc. This
often result in a solution that neither works for both of the starting positions. One can conclude
that it is only possible to implement a certain region of the space.
Furthermore, SEDS tries to estimate the data as best as it can while ensuring stability of the DS.
Therefore the resulting DS is not overfitting the data. While making an optimization on the curves
to find suitable demonstrations one has to find demonstrations that are suitable even if they are
modified by SEDS algorithm.
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Chapter 3

Conclusion

In conclusion, by scaling the DS as we did in 2.2 we observed a possible way of coupling the con-
veyor belt with the robotic arm. While this method provides a range of solutions it is constrained
by the fact that the shape of the DS cannot be changed. This results in an array of solutions that
is more limited.
In 2.3, we manipulate demonstrations at discrete velocities vc in order to find suitable demon-
strations for a given continuous value of the speed of the conveyor belt. Running SEDS on those
manipulated demonstrations provides DS with different shapes as the demonstrations used are
different for each speed vc of the conveyor belt. The main problem is that the method is computa-
tionally expensive as one has to find a new DS for each new speed vc.
Last in 2.4, we add an external signal s to the modified SEDS algorithm. The modified SEDS
treats this signal (in our case this signal is vc) as an independent variable. The DS is still stable in
the dimensions of x and y but the shape and norm of it changes in function of s. Finally to train
effectively the DS, we present an approach using parametrized curves that are selected using an
optimization.
Our hypothesis is validated. Indeed, we manage to improve the probability of intercepting the
object by coupling the conveyor belt and the robotic arm. However, the reliability of the method
is not perfect. Conflict between demonstrations starting at different positions and SEDS stability
conditions make the curve generated by our final DS not exactly the same as the demonstrations.
The method is effective when a certain region of the space of the DS is trained.
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